An algebra problem by atishay jain

Algebra Level 3

A polynomial function f ( x ) f(x) is of degree 4 and with leading coefficient 1. The real roots to f ( x ) = 0 f(x)=0 are a a , b b , c c , and d d . It is given that

a [ 1 + c + d + b ( 1 + c ) ( 1 + d ) ] + b ( 1 + c ) ( 1 + d ) + c ( 1 + d ) + d ( 1 + a c ) = 98 a\big[1+ c + d+ b(1 + c)(1 + d)\big] + b(1 + c)(1 + d) + c(1+d) + d(1 + ac) = 98

Find the value of f ( 1 ) f(-1) .


The answer is 99.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 13, 2017

Since a a , b b , c c , and d d are the roots of f ( x ) f(x) , then

f ( x ) = x 4 ( a + b + c + d ) x 3 + ( a b + a c + a d + b c + b d + c d ) x 2 ( a b c + a b d + a c d + b c d ) x + a b c d f ( 1 ) = 1 + a + b + c + d + a b + a c + a d + b c + b d + c d + a b c + a b d + a c d + b c d + a b c d = 1 + a [ ( 1 + b + c + d + b c + b d + b c d ) ] + b + b c + b d + b c d + c + c d + d + a c d = 1 + a [ ( 1 + c + d + b ( 1 + c + d + c d ) ] + b ( 1 + c + d + c d ) + c ( 1 + d ) + d ( 1 + a c ) = 1 + a [ ( 1 + c + d + b ( 1 + c ) ( 1 + d ) ] + b ( 1 + c ) ( 1 + d ) + c ( 1 + d ) + d ( 1 + a c ) = 1 + 98 = 99 \begin{aligned} f(x) & = x^4 - (a+b+c+d)x^3 + (ab+ac+ad+bc+bd+cd)x^2 - (abc + abd + acd + bcd)x + abcd \\ \implies f(-1) & = 1+ {\color{#3D99F6}a} +b+c+d +{\color{#3D99F6}a}b+{\color{#3D99F6}a}c+{\color{#3D99F6}a}d+bc+bd+cd + {\color{#3D99F6}a}bc + {\color{#3D99F6}a}bd + acd + bcd + {\color{#3D99F6}a}bcd \\ & = 1 + {\color{#3D99F6}a}\big[(1+{\color{#D61F06}b} +c+d+{\color{#D61F06}b}c +{\color{#D61F06}b}d + {\color{#D61F06}b}cd)\big] + {\color{#D61F06}b} +{\color{#D61F06}b}c +{\color{#D61F06}b}d + {\color{#D61F06}b}cd + c + cd + d + acd \\ & = 1 + a\big[(1+c+d+{\color{#D61F06}b}(1+ c +d + cd)\big] + {\color{#D61F06}b}(1 +c +d + cd) + c(1 + d) + d(1 + ac) \\ & = 1 + a\big[(1+c+d+b(1+ c)(1+d)\big] + b(1+c)(1+d) + c(1 + d) + d(1 + ac) \\ & = 1 + 98 \\ & = \boxed{99} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...