A calculus problem by Atul Kumar Ashish

Calculus Level 3

1 5 { x } x d x = ? \int_{1}^{5}\frac{\{x\}}{\lfloor x \rfloor} \, dx = \,?

Notations:

25 24 \frac{25}{24} 1 1 Doesn't converge 49 47 \frac{49}{47}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hassan Abdulla
Oct 14, 2017

Let I = 1 5 { x } x d x = k = 1 4 k k + 1 { x } x d x I=\int _{ 1 }^{ 5 }{ \frac { \left\{ x \right\} }{ \left\lfloor x \right\rfloor } dx } =\sum _{ k=1 }^{ 4 }{ \int _{ k }^{ k+1 }{ \frac { \left\{ x \right\} }{ \left\lfloor x \right\rfloor } dx } }

when x ( k , k + 1 ) { { x } = x k x = k x\in \left( k,k+1 \right) \Rightarrow \begin{cases} \left\{ x \right\} =x-k \\ \left\lfloor x \right\rfloor =k \end{cases}

so I = k = 1 4 k k + 1 x k k d x I=\sum _{ k=1 }^{ 4 }{ \int _{ k }^{ k+1 }{ \frac { x-k }{ k } dx } }

I = k = 1 4 1 k ( x 2 2 k x ) k k + 1 = k = 1 4 1 k ( 1 2 ) I=\quad \sum _{ k=1 }^{ 4 }{ \frac { 1 }{ k } \left( \frac { { x }^{ 2 } }{ 2 } -kx \right) { | }_{ k }^{ k+1 } } =\sum _{ k=1 }^{ 4 }{ \frac { 1 }{ k } \left( \frac { 1 }{ 2 } \right) }

I = 1 2 ( 1 + 1 2 + 1 3 + 1 4 ) I=\frac { 1 }{ 2 } \cdot \left( 1+\frac { 1 }{ 2 } +\frac { 1 }{ 3 } +\frac { 1 }{ 4 } \right)

I = 25 24 I=\frac { 25 }{ 24 }

Chew-Seong Cheong
Oct 25, 2019

1 5 { x } x d x = k = 1 4 1 k 0 1 x d x = ( 1 1 + 1 2 + 1 3 + 1 4 ) 1 2 = 25 24 \begin{aligned} \int_1^5 \frac {\{x\}}{\lfloor x \rfloor} dx & = \sum_{k=1}^4 \frac 1k \int_0^1 x \ dx \\ & = \left(\frac 11 + \frac 12 + \frac 13 + \frac 14\right) \frac 12 \\ & = \boxed{\frac {25}{24}} \end{aligned}

Tom Engelsman
Oct 24, 2017

The above definite integral can be expressed as:

1 5 { x } x d x = 1 5 x x x d x = 1 2 x 1 d x + 2 3 x 2 d x + 3 4 x 3 d x + 4 5 x 4 d x 1 5 1 d x \int_{1}^{5} \frac{\{x\}}{\lfloor x \rfloor} dx = \int_{1}^{5} \frac{x - \lfloor x \rfloor}{\lfloor x \rfloor} dx = \int_{1}^{2} \frac{x}{1} dx + \int_{2}^{3} \frac{x}{2} dx + \int_{3}^{4} \frac{x}{3} dx + \int_{4}^{5} \frac{x}{4} dx - \int_{1}^{5} 1 dx ;

or x 2 2 1 2 + x 2 4 2 3 + x 2 6 3 4 + x 2 8 4 5 x 1 5 = 3 2 + 5 4 + 7 6 + 9 8 4 = 25 24 \frac{x^2}{2}|^{2}_{1} + \frac{x^2}{4}|^{3}_{2} + \frac{x^2}{6}|^{4}_{3} + \frac{x^2}{8}|^{5}_{4} - x|^{5}_{1} = \frac{3}{2} + \frac{5}{4} + \frac{7}{6} + \frac{9}{8} - 4 = \boxed{\frac{25}{24}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...