Horizontal asymptote is what you need.

Calculus Level 3

lim n ( n ! n n ) 2 n 4 + 1 5 n 5 + 1 = ? \begin{aligned}\lim_{n\to\infty}\left(\frac{n!}{n^n}\right)^{\frac{2n^4+1}{5n^5+1}}=\,?\end{aligned}

Notation: n ! n! denotes factorial notation.

2 e \frac{2}{e} ( 1 e ) 2 5 \left(\frac{1}{e}\right)^{\frac{2}{5}} 1 e 2 \frac{1}{e^2} e e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Atul Kumar Ashish
Oct 16, 2017

L = lim n ( n ! n n ) 2 n 4 + 1 5 n 5 + 1 ln L = lim n 2 n 4 + 1 5 n 5 + 1 ln ( n ! n n ) = lim n 2 n 4 + 1 5 n 5 + 1 k = 1 n ln ( k n ) = lim n 2 n 5 + n 5 n 5 + 1 lim n 1 n k = 1 n ln ( k n ) = lim n 2 + 1 n 4 5 + 1 n 5 0 1 ln x d x = ( 2 5 ) ( 1 ) = 2 5 ln L = 2 5 L = ( 1 e ) 2 5 \begin{aligned} L&=\lim_{n\to\infty}\color{#3D99F6}\left(\frac{n!}{n^n}\right)^{\color{#D61F06}\frac{2n^4+1}{5n^5+1}}\\ \ln L &=\lim_{n\to\infty}\color{#D61F06}\frac{2n^4+1}{5n^5+1}\color{#3D99F6} \ln \left(\frac{n!}{n^n}\right)\\ &=\lim_{n\to\infty}\color{#D61F06}\frac{2n^4+1}{5n^5+1}\color{#3D99F6}\sum_{k=1}^{n}\ln \left(\frac{k}{n}\right)\\ &=\color{#D61F06}\lim_{n\to\infty}\frac{2n^5+n}{5n^5+1}\color{#3D99F6}\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}\ln \left(\frac{k}{n}\right)\\ &=\color{#D61F06}\lim_{n\to\infty}\frac{2+\frac{1}{n^4}}{5+\frac{1}{n^5}}\color{#3D99F6} \int_{0}^{1}\ln x \,dx\\ &=\color{#D61F06}\left(\frac{2}{5}\right)\color{#3D99F6}\left(-1\right)\\ &=-\frac{2}{5}\\ \therefore \ln L &=-\frac{2}{5}\\ \implies L&=\boxed{\left(\frac{1}{e}\right)^{\frac{2}{5}}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...