A geometry problem by Atul Kumar Ashish

Geometry Level 3

( 1 + tan 1 ) ( 1 + tan 2 ) ( 1 + tan 3 ) ( 1 + tan 4 5 ) = 2 n (1+\tan 1^\circ)(1+\tan 2^\circ)(1+\tan 3^\circ) \cdots (1+\tan 45^\circ) = 2^n

The above equation holds true for some positive integer n n . Find n n .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 20, 2016

We note that: tan ( 45 k ) = tan 4 5 tan k 1 + tan 4 5 tan k = 1 tan k 1 + tan k \begin{aligned} \tan (45-k)^\circ & = \dfrac {\tan 45^\circ - \tan k^\circ}{1+\tan 45^\circ \tan k^\circ} = \dfrac {1 - \tan k^\circ}{1 + \tan k^\circ} \end{aligned}

Therefore, ( 1 + tan k ) ( 1 + tan ( 45 k ) ) = ( 1 + tan k ) ( 1 + 1 tan k 1 + tan k ) = 2 \begin{aligned} \left(1+ \tan k^\circ\right)\left(1 + \tan (45-k)^\circ\right) & = \left(1+ \tan k^\circ\right)\left(1 + \dfrac {1 - \tan k^\circ}{1 + \tan k^\circ}\right) = 2 \end{aligned}

Now, we have:

P = ( 1 + tan 1 ) ( 1 + tan 2 ) ( 1 + tan 3 ) ( 1 + tan 4 3 ) ( 1 + tan 4 4 ) ( 1 + tan 4 5 ) = ( 1 + tan 1 ) ( 1 + tan 4 4 ) ( 1 + tan 2 ) ( 1 + tan 4 3 ) ( 1 + tan 2 2 ) ( 1 + tan 2 3 ) ( 1 + 1 ) = ( 1 + tan 1 ) ( 1 + tan ( 45 1 ) ) ( 1 + tan 2 ) ( 1 + tan ( 45 2 ) ) ( 1 + tan 22 ) ) ( 1 + tan ( 45 2 2 ) 2 = 2 2 2 2 2 22 terms 2 = 2 23 \begin{aligned} P & = (1+\tan 1^\circ)(1+\tan 2^\circ)(1+\tan 3^\circ) \cdots (1+\tan 43^\circ)(1+\tan 44^\circ)(1+\color{#D61F06}{\tan 45^\circ}) \\ & = (1+\tan 1^\circ)(1+\tan 44^\circ)(1+\tan 2^\circ)(1+\tan 43^\circ) \cdots (1+\tan 22^\circ)(1+\tan 23^\circ)(1+\color{#D61F06}{1}) \\ & = \color{#3D99F6}{(1+\tan 1^\circ)(1+\tan (45-1)^\circ)}\color{#D61F06}{(1+\tan 2^\circ)(1+\tan (45-2)^\circ)} \cdots\color{#3D99F6}{(1+\tan 22)^\circ)(1+\tan (45-22^\circ)}\cdot \color{#D61F06}{2} \\ & = \underbrace{\color{#3D99F6}{2}\cdot \color{#D61F06}{2} \cdot \color{#3D99F6}{2} \cdot \color{#D61F06}{2} \cdots \color{#3D99F6}{2}}_{22 \text{ terms}}\cdot \color{#D61F06}{2} \\ & = 2^{23} \end{aligned}

n = 23 \implies n = \boxed{23}

Yes this method is absolutely correct.

D K - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...