A geometry problem by Bala vidyadharan

Geometry Level 3

{ a = cos α + cos β b = sin α + sin β 2 θ = α β \begin{cases} a= \cos\alpha +\cos\beta \\ b = \sin\alpha +\sin\beta \\ 2\theta = \alpha -\beta \\ \end{cases}

If α , β , a , b \alpha , \beta, a,b and θ \theta satisfy the system of equations above, state the value of cos ( 3 θ ) cos ( θ ) \dfrac{\cos(3\theta)}{\cos(\theta)} in terms of a a and b b .

a 2 + b 2 4 a^2 + \frac{b^2}4 a 2 + b 2 2 a^2+b^2-2 a 2 + b 2 3 a^2+b^2-3 3 a 2 b 2 3-a^2-b^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kenny Lau
Aug 1, 2015

Seriously. I can't see how this can be solved by a geometrical approach at all.

  • Note that cos 3 θ cos θ = 4 cos 2 θ 3 \dfrac{\cos3\theta}{\cos\theta}=4\cos^2\theta-3 .
  • Also:
  • a 2 + b 2 a^2+b^2
  • = cos 2 α + 2 cos α cos β + cos 2 β + sin 2 α + 2 sin α sin β + sin 2 β =\cos^2\alpha + 2\cos\alpha\cos\beta + \cos^2\beta + \sin^2\alpha + 2\sin\alpha\sin\beta + \sin^2\beta
  • = 2 + 2 cos α cos β + 2 sin α sin β =2 + 2\cos\alpha\cos\beta + 2\sin\alpha\sin\beta
  • = 2 + 2 cos ( α β ) =2 + 2\cos(\alpha-\beta)
  • = 2 + 2 cos 2 θ =2 + 2\cos2\theta
  • Then:
  • cos 3 θ cos θ \dfrac{\cos3\theta}{\cos\theta}
  • = 4 cos 2 θ 3 =4\cos^2\theta-3
  • = 2 + 2 cos 2 θ 3 =2 + 2\cos2\theta - 3
  • = a 2 + b 2 3 =a^2 + b^2 - 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...