Series Riddle

Calculus Level pending

n = 0 2 n i 2 = ? \large \left | \sum_{n=0}^\infty 2^{-ni} \right | ^2 = \, ?

Clarification : i = 1 i=\sqrt{-1} .

1 2 2 cos ln 2 \frac{1}{2-2\cos\ln2} 0 1 1 2 + 2 sin ln 2 \frac{1}{2+2\sin\ln2} 1 2 2 sin ln 2 \frac{1}{2-2\sin\ln2} 1 2 + 2 cos ln 2 \frac{1}{2+2\cos\ln2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Bar Hemo
Mar 17, 2016

n = 0 ( 2 ) n j = 1 1 2 j = 1 1 e j ln 2 = 1 1 cos ln 2 + j sin ln 2 = \left|\displaystyle\sum_{n=0}^{\infty} (2)^{-nj}\right| =\left|\dfrac{1}{1-2^{-j}}\right|= \left|\dfrac{1}{1-e^{-j\ln2}}\right|=\left|\dfrac{1}{1-\cos\ln2+j\sin\ln2}\right|=

1 ( 1 cos ln 2 ) 2 + ( sin ln 2 ) 2 = 1 1 2 cos ln 2 + ( cos ln 2 ) 2 + ( sin ln 2 ) 2 = 1 2 2 cos ln 2 \dfrac{1}{(1-\cos\ln2)^2+(\sin\ln2)^2}=\dfrac{1}{1-2\cos\ln2+(\cos\ln2)^2+(\sin\ln2)^2}=\dfrac{1}{2-2\cos\ln2}

Note that the absolute value of the complex number z = a + b i z = a + bi is a 2 + b 2 \sqrt{ a^2+b^2} . I have added a ^square to your problem.

Calvin Lin Staff - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...