An algebra problem by Cameron CHang

Algebra Level 4

( 4 4 ! + 3 3 ! + 2 2 ! + 1 1 ! ) ( 4 4 + 4 3 7 4 2 4 + 6 4 4 13 4 2 + 36 5 4 + 5 3 7 5 2 5 + 6 5 4 13 5 2 + 36 n 4 + n 3 7 n 2 n + 6 n 4 13 n 2 + 36 ) (4\cdot 4!+ 3\cdot 3! + 2\cdot 2!+ 1\cdot 1!) \left(\frac{4^4+4^3-7\cdot 4^2-4+6}{4^4-13\cdot 4^2+36} \cdot \frac{5^4+5^3-7\cdot 5^2-5+6}{5^4-13\cdot 5^2 +36} \cdots \frac{n^4+n^3-7n^2-n +6}{n^4-13n^2+36}\right)

Evaluate the expression above for n = 117 n=117 .


The answer is 33350.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let

P = 4 4 + 4 3 7 4 2 4 + 6 4 4 13 4 2 + 36 5 4 + 5 3 7 5 2 5 + 6 5 4 13 5 2 + 36 n 4 + n 3 7 n 2 n + 6 n 4 13 n 2 + 36 = k = 4 n k 4 + k 3 7 k 2 k + 6 k 4 13 k 2 + 36 = k = 4 n ( k 1 ) ( k + 1 ) ( k 2 ) ( k + 3 ) ( k 2 4 ) ( k 2 9 ) = k = 4 n ( k 1 ) ( k + 1 ) ( k 2 ) ( k + 3 ) ( k 2 ) ( k + 2 ) ( k 3 ) ( k + 3 ) = k = 4 n ( k 1 ) ( k + 1 ) ( k 3 ) ( k + 2 ) = k = 1 n 3 ( k + 2 ) ( k + 4 ) k ( k + 5 ) Putting n = 117 = k = 1 114 ( k + 2 ) ( k + 4 ) k ( k + 5 ) = 5 ! 116 ! 118 ! 2 ! 4 ! 114 ! 119 ! = 5 115 116 2 119 \begin{aligned} P & = \frac {4^4+4^3-7\cdot 4^2-4+6}{4^4-13\cdot 4^2+36}\cdot \frac {5^4+5^3-7\cdot 5^2-5+6}{5^4-13\cdot 5^2+36} \cdots \frac {n^4+n^3-7n^2-n+6}{n^4-13n^2+36} \\ & = \prod_{k=4}^n \frac {k^4+k^3-7k^2-k+6}{k^4-13 k^2+36} \\ & = \prod_{k=4}^n \frac {(k-1)(k+1)(k-2)(k+3)}{(k^2-4)(k^2-9)} \\ & = \prod_{k=4}^n \frac {(k-1)(k+1)(k-2)(k+3)}{(k-2)(k+2)(k-3)(k+3)} \\ & = \prod_{k=4}^n \frac {(k-1)(k+1) }{(k-3)(k+2)} \\ & = \prod_{\color{#3D99F6}k=1}^{\color{#3D99F6}n-3} \frac {(k+2)(k+4)}{k(k+5)} \quad \quad \small \color{#3D99F6} \text{Putting }n=117 \\ & = \prod_{\color{#3D99F6}k=1}^{\color{#3D99F6}114} \frac {(k+2)(k+4)}{k(k+5)} \\ & = \frac {5!116!118!}{2!4!114!119!} \\ & = \frac {5\cdot 115 \cdot 116}{2\cdot 119} \end{aligned}

( 4 4 ! + 3 3 ! + 2 2 ! + 1 1 ! ) P = 119 5 115 116 2 119 = 33350 \implies \left(4\cdot 4! + 3\cdot 3! + 2\cdot 2! + 1\cdot 1! \right) P = 119 \cdot \dfrac {5\cdot 115 \cdot 116}{2\cdot 119} = \boxed{33350}

Sir, I don't understand about the 4th and 5th line. Can you explain it ?

Fidel Simanjuntak - 4 years, 2 months ago

Log in to reply

I have changed it as j = k 3 k = j + 3 j = k-3 \implies k=j+3 . When k = 4 k=4 , j = 1 j=1 .

Chew-Seong Cheong - 4 years, 2 months ago

Log in to reply

Oh, I see. Thank you!

Fidel Simanjuntak - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...