A geometry problem by Charlton Teo

Geometry Level 1

Which of the following is equal to

sin 4 θ + cos 4 θ 1 2 - \frac {\sin^4 \theta + \cos^4 \theta-1}{2}

for all values of θ ? \theta ?

sin 2 θ × cos 2 θ \sin^2 \theta \times \cos^2 \theta 1 1 sin 2 θ tan 8 θ \frac {\sin^2 \theta}{\tan^8 \theta} cos 8 θ + cos 6 θ 2 \frac {\cos^8 \theta + \cos^6 \theta}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Oct 16, 2014

sin 4 θ + cos 4 θ 1 2 -\dfrac {\sin^4{\theta} +\cos^4 {\theta} -1 } {2}

= sin 2 θ ( 1 cos 2 θ ) + cos 2 θ ( 1 sin 2 θ ) 1 2 = -\dfrac {\sin^2{\theta} (1 - \cos^2 {\theta}) +\cos^2 {\theta} (1 - \sin^2 {\theta}) -1 } {2}

= sin 2 θ sin 2 θ cos 2 θ + cos 2 θ sin 2 θ cos 2 θ 1 2 = -\dfrac {\sin^2{\theta} - \sin^2 {\theta} \cos^2 {\theta} +\cos^2 {\theta} - \sin^2 {\theta} \cos^2 {\theta} -1 } {2}

= 1 2 sin 2 θ cos 2 θ 1 2 = -\dfrac {1 - 2 \sin^2 {\theta} \cos^2 {\theta} -1 } {2}

= sin 2 θ cos 2 θ = \boxed {\sin^2 {\theta} \cos^2 {\theta}}

superb answer

paul raj - 6 years, 7 months ago
Sanjeet Raria
Oct 16, 2014

The expression can be written as ( sin 2 θ + cos 2 θ ) 2 2 sin 2 θ cos 2 θ 1 2 \large -\frac{(\sin^2\theta+\cos^2\theta)^2-2\sin^2\theta• \cos^2\theta-1}{2} = 2 sin 2 θ cos 2 θ 2 = sin 2 θ cos 2 θ = -\frac{-2 \sin^2\theta• \cos^2\theta}{2}=\huge\boxed{\sin^2 \theta •\cos^2 \theta} Simpil!!

how did you made your font larger

U Z - 6 years, 7 months ago

Log in to reply

\huge @megh choksi

Sanjeet Raria - 6 years, 7 months ago

Use \cdot instead of •.

Victor Loh - 6 years, 3 months ago
Roy Tu
Jan 18, 2015

Plug in θ = 0 \theta = 0 . The first answer choice is undefined and the rest are nonzero.

Daniel Huang
Oct 29, 2014

Distribute the -1 in and we get:

1 s i n 4 θ c o s 4 θ 2 = ( 1 s i n 2 θ ) ( 1 + s i n 2 θ ) c o s 4 θ 2 \frac { 1-{ sin }^{ 4 }\theta -{ cos }^{ 4 }\theta }{ 2 } =\frac { (1-sin^{ 2 }\theta )(1+sin^{ 2 }\theta )-cos^{ 4 }\theta }{ 2 }

Since 1 s i n 2 θ = c o s 2 θ 1-sin^{ 2 }\theta = cos^{2}\theta , we can factor that out:

c o s 2 θ ( 1 + s i n 2 θ c o s 2 θ ) 2 \frac { cos^{ 2 }\theta (1+sin^{ 2 }\theta -cos^{ 2 }\theta ) }{ 2 }

Finally, since 1 c o s 2 θ = s i n 2 θ 1-cos^{2}\theta = sin^{2}\theta , we get:

c o s 2 θ ( s i n 2 θ + s i n 2 θ ) 2 = s i n 2 θ c o s 2 θ \frac { cos^{ 2 }\theta (sin^{ 2 }\theta +sin^{ 2 }\theta ) }{ 2 } =\boxed{sin^{ 2 }\theta cos^{ 2 }\theta}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...