Complicated definite integral

Calculus Level 4

0 1 cos ( x ) ln ( cos ( x ) ) + x sin ( x ) x 2 cos ( x ) d x \int_0^1 \frac{\cos\left(x\right)\ln\left(\cos\left(x\right)\right)+x\sin\left(x\right)}{x^{2}\cos\left(x\right)}\,dx

If the definite integral above can be expressed in the form ln f ( 1 ) \ln f(1) , where f ( x ) f(x) is an elementary function, then what is the value of f ( π ) f(\pi) ?

Note: Don't use CAS!


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Van Lier
Nov 25, 2015

I = 0 1 c o s ( x ) l n ( c o s ( x ) ) + x s i n ( x ) x 2 c o s ( x ) d x = 0 1 l n ( c o s ( x ) ) x 2 d x + 0 1 s i n ( x ) x c o s ( x ) d x I = \int_0^1 \! \dfrac{cos(x) ln(cos(x)) + xsin(x)}{x^2 cos(x)} \ \mathrm{d}x = \int_0^1 \! \dfrac{ln(cos(x))}{x^2} \ \mathrm{d}x + \int_0^1 \! \dfrac{sin(x)}{x cos(x)} \ \mathrm{d}x

Using partial integration on the first integral , with u = l n ( c o s ( x ) ) and v = 1 x 2 v = 1 x u = ln(cos(x)) \hspace{2mm} \text{and} \hspace{2mm} v'= \dfrac{1}{x^2} \Rightarrow v = \dfrac{-1}{x} ,

we find for I I :

I = l n ( c o s ( x ) ) x 0 1 0 1 s i n ( x ) x c o s ( x ) + 0 1 s i n ( x ) x c o s ( x ) = l n ( c o s ( x ) ) x 0 1 . I = \left . \dfrac{-ln(cos(x))}{x} \right|_0^1 - \int_0^1 \! \dfrac{sin(x)}{x cos(x)} + \int_0^1 \! \dfrac{sin(x)}{x cos(x)} = \left . \dfrac{-ln(cos(x))}{x} \right|_0^1 .

Now plugging in 1, gives us -ln(cos(1)), while plugging in 0, gives us 0 0 \frac{0}{0}

Using L'Hôpital's rule on this undetermined expression, gives us t a n ( x ) tan(x) , which is equal to zero when x equals zero.

So I = l n ( c o s ( 1 ) ) I = -ln(cos(1)) , f ( x ) = c o s ( x ) f(x) = cos(x) and c o s ( π ) = 1 cos(\pi) = -1 .

You don't even need parts notice once you split the fraction its just product rule

<> <> - 3 years, 10 months ago

Log in to reply

What do you mean?

Tom Van Lier - 3 years, 10 months ago

Observe when we take derivative of f(x)g(x) we have f'(x)g(x)+g'(x)f(x) In this case set f(x)=ln(cos(x)) and g(x)=1/x Then it's evident the negation of this is what the integral becomes once you split it

<> <> - 3 years, 10 months ago

Log in to reply

That's true, thx :)

Tom Van Lier - 3 years, 10 months ago

@Tom Van Lier

<> <> - 3 years, 10 months ago

@Tom Van Lier No problem

<> <> - 3 years, 10 months ago

If we ignore the limits in the definite integral above, the indefinite integral cannot be easily found using elementary functions. We can use differentiation under the integral sign to evaluate the definite integral without having to evaluate the indefinite integral.

I ( t ) = 0 1 cos ( t x ) ln ( cos ( t x ) ) + t x sin ( t x ) x 2 cos ( t x ) d x = 0 1 ln ( cos ( t x ) ) x 2 + t tan ( t x ) x d x \mathrm{I}(t) = \int_0^1 \frac{\cos\left(tx\right)\ln\left(\cos\left(tx\right)\right)+tx\sin\left(tx\right)}{x^{2}\cos\left(tx\right)}\,\mathrm{d}x = \int_0^1 \frac{\ln\left(\cos\left(tx\right)\right)}{x^{2}}+\frac{t\tan\left(tx\right)}{x}\,\mathrm{d}x

I ( t ) = d d t 0 1 ln ( cos ( t x ) ) x 2 + t tan ( t x ) x d x = 0 1 δ δ t ( ln ( cos ( t x ) ) x 2 + t tan ( t x ) x ) d x \mathrm{I}'(t) = \frac{\mathrm d}{\mathrm dt} \int_0^1 \frac{\ln\left(\cos\left(tx\right)\right)}{x^{2}}+\frac{t\tan\left(tx\right)}{x}\,\mathrm{d}x = \int_0^1 \frac{\mathrm \delta}{\mathrm \delta t} \left( \frac{\ln\left(\cos\left(tx\right)\right)}{x^{2}}+\frac{t\tan\left(tx\right)}{x}\right)\,\mathrm{d}x

I ( t ) = 0 1 tan ( t x ) x + tan ( t x ) x + t sec 2 ( t x ) d x = 0 1 t sec 2 ( t x ) d x \mathrm{I}'(t) = \int_0^1 -\frac{\tan(tx)}{x} + \frac{\tan(tx)}{x} +t\sec^{2}(tx)\,\mathrm{d}x = \int_0^1 t\sec^{2}(tx)\,\mathrm{d}x

Now we can evaluate this integral with respect to x x and find an expression for I ( t ) \mathrm I'(t) entirely in terms of t t .

I ( t ) = 0 1 t sec 2 ( t x ) d x = tan t x x = 0 x = 1 = tan t \mathrm{I}'(t) = \int_0^1 t\sec^{2}(tx)\,\mathrm{d}x = \tan{tx}\,\Big|_{x=0}^{x=1} = \tan{t}

Now that we have found I ( t ) \mathrm I'(t) we can determine an expression for I ( t ) \mathrm I(t) .

I ( t ) = tan t d t = ln ( cos ( t ) ) + c = ln ( sec ( t ) ) + c \mathrm{I}(t) = \int \tan{t}\,\mathrm{d}t = -\ln(\cos(t)) + c = \ln(\sec(t)) + c

To solve for the constant of integration, we go back to the original integral. I ( 0 ) = 0 1 ln ( cos ( 0 ) ) x 2 + 0 tan ( 0 ) x d x = 0 \mathrm{I}(0) = \int_0^1 \frac{\ln\left(\cos\left(0\right)\right)}{x^{2}}+\frac{0\tan\left(0\right)}{x}\,\mathrm{d}x = 0 . Substituting these into the equation for I ( t ) \mathrm{I}(t) shows that c = 0 c=0 and hence I ( t ) = ln ( sec ( t ) ) \mathrm{I}(t) = \ln(\sec(t)) . To find the value of the original definite integral, substitute t = 1 t=1 into I ( t ) \mathrm{I}(t) to obtain ln ( sec ( 1 ) ) \boxed{\ln\left(\sec(1)\right)} . Hence f ( x ) = sec ( x ) f(x) = \sec(x) and f ( π ) = 1 \boxed{f(\pi) = -1} .

The indefinite integral can be quite easily found, using the sum rule and then P.I. on the first integral. It is equal to l n ( c o s ( x ) ) x \dfrac{-ln(cos(x))}{x} (see solution below with boundaries, but that doesn't change the steps).

Tom Van Lier - 5 years, 6 months ago

What is CAS?what method is it?

Shreesh Babu - 5 years, 6 months ago

Log in to reply

Computer Algebra System, in other words don't use a calculator.

Conservative Nightmare - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...