Composite recursion

A sequence is formed by the following rules: s 1 = 3 , s 2 = b s_1=3,\textrm{ }s_2=b and s n + 2 = s n + 1 + ( 1 ) n s n s_{n+2}=s_{n+1}+(-1)^ns_n for all n 1 n\geq 1 .

What is the largest integer value of b < 1000 b < 1000 for which 2015 is a member of the sequence?


The answer is 253.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Miles Koumouris
Jan 2, 2017

For m 1 , we have: \textrm{For }m\geq 1,\textrm{ we have:}

s 2 m + 2 = s 2 m + 1 + s 2 m s_{2m+2}=s_{2m+1}+s_{2m}

s 2 m + 3 = s 2 m + 2 s 2 m + 1 = s 2 m s_{2m+3}=s_{2m+2}-s_{2m+1}=s_{2m}

s 2 m + 4 = s 2 m + 3 + s 2 m + 2 = s 2 m + 2 + s 2 m s_{2m+4}=s_{2m+3}+s_{2m+2}=s_{2m+2}+s_{2m}

This means that the coefficients of a and b in the even terms \textrm{This means that the coefficients of }a\textrm{ and }b\textrm{ in the even terms}

form a Fibonacci sequence, and, from the 5th term, every odd \textrm{form a Fibonacci sequence, and, from the 5th term, every odd}

term is a repeat of the third term before it. \textrm{term is a repeat of the third term before it.}

So, defining F 1 = 1 , F 2 = 2 , and F n = F n 1 + F n 2 for n 3 , \textrm{So, defining }F_1=1,\textrm{ }F_2=2,\textrm{ and }F_n=F_{n-1}+F_{n-2}\textrm{ for }n\geq 3,

we have s 2 n = b F n a F n 2 for n 3 . \textrm{we have }s_{2n}=bF_n-aF_{n-2}\textrm{ for }n\geq 3\textrm{.}

Since a = 3 and b < 1000 , none of the first five terms of the \textrm{Since }a=3\textrm{ and }b<1000\textrm{, none of the first five terms of the}

given sequence equal 2015. So we are looking for integer \textrm{given sequence equal 2015. So we are looking for integer}

solutions of b F n 3 F n 2 = 2015 for n 3 . \textrm{solutions of }bF_n-3F_{n-2}=2015\textrm{ for }n\geq 3\textrm{.}

s 6 = 3 b 3 = 2015 , has no solution. s_6=3b-3=2015,\textrm{ has no solution.}

s 8 = 5 b 6 = 2015 , has no solution. s_8=5b-6=2015,\textrm{ has no solution.}

s 10 = 8 b 9 = 2015 implies b = 253 . s_{10}=8b-9=2015\textrm{ implies }b=253\textrm{.}

For n 6 , we have b = 2015 / F n + 3 F n 2 / F n . \textrm{For }n\geq 6,\textrm{ we have }b=2015/F_n+3F_{n-2}/F_n\textrm{.}

Since F n increases, we have F n 13 and F n 2 / F n < 1 for n 6 . \textrm{Since }F_n\textrm{ increases, we have }F_n\geq 13\textrm{ and }F_{n-2}/F_n<1\textrm{ for }n\geq 6\textrm{.}

Hence b < 2015 / 13 + 3 = 158 . So the largest value of b is 253 . \textrm{Hence }b<2015/13+3=158\textrm{. So the largest value of }b\textrm{ is }\boxed{253}\textrm{.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...