A system

Algebra Level 4

{ a + b = n 1 a + 1 b = n 896 m ( n + 896 m ) \large \begin{cases} a+b=n\\ \dfrac{1}{a}+\dfrac{1}{b}=\dfrac{-n}{896m(n+896m)} \end{cases}

Consider the system of equations above. If a b = 2016 a-b=2016 , what is the maximum possible value of the product m n mn ?


The answer is 567.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Miles Koumouris
Jan 1, 2017

1 a + 1 b = n 896 m ( n + 896 m ) \frac{1}{a}+\frac{1}{b}=\frac{-n}{896m(n+896m)}

n a b = 4 n 1792 m ( 2 n + 1792 m ) \Rightarrow \frac{n}{ab}=\frac{-4n}{1792m(2n+1792m)}

4 a b = 1792 m ( 2 n + 1792 m ) \Rightarrow -4ab=1792m(2n+1792m)

n 2 + 1792 m ( 2 n + 1792 m ) = ( a b ) 2 \Rightarrow n^2 + 1792m(2n+1792m)=(a-b)^2

± ( a b ) = n + 1792 m \Rightarrow \pm(a-b) = n+1792m

± 2016 = n + 1792 m \Rightarrow \pm2016 = n+1792m

m n = m ( ± 2016 1792 m ) \Rightarrow mn=m(\pm2016-1792m)

So the maximum value of m n mn is 1792 × ( 9 16 ) 2 + 2016 × 9 16 = 567 -1792\times (\frac{9}{16})^2 + 2016\times\frac{9}{16} = \boxed{567} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...