An algebra problem by Hemanth K

Algebra Level 3

If a , n > 1 a,n> 1 , which of the following real numbers is larger in value?

A = log a + log ( a + 1 ) + + log ( a + n 1 ) B = ( log a + log ( a + n 1 ) ) n 2 \begin{aligned} A &=& \log a + \log (a+1) + \cdots + \log(a+n-1) \\ B &=& (\log a + \log(a+n-1) ) \dfrac n2 \end{aligned}

A Both are equal B Cannot be determined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...