Trigonometric Integral

Calculus Level 2

Evaluate the indefinite integral

( 1 + cos x ) 3 d x . \int (1 + \cos x)^3 \, dx.

Clarification: C C denotes the arbitrary constant of integration .

1 12 sin 3 x + 3 4 sin 2 x + 15 4 sin x + 5 2 x + C \frac{1}{12} \sin 3x + \frac{3}{4} \sin 2x\\ + \frac{15}{4} \sin x + \frac{5}{2} x + C 1 12 cos 3 x + 3 4 cos 2 x 15 4 cos x + 5 2 x + C \frac{1}{12} \cos 3x + \frac{3}{4} \cos 2x\\ - \frac{15}{4} \cos x + \frac{5}{2} x + C 1 12 cos 3 x + 3 4 cos 2 x + 15 4 cos x + 5 2 x + C \frac{1}{12} \cos 3x + \frac{3}{4} \cos 2x\\ + \frac{15}{4} \cos x + \frac{5}{2} x + C 1 12 sin 3 x + 3 4 sin 2 x 15 4 sin x + 5 2 x + C \frac{1}{12} \sin 3x + \frac{3}{4} \sin 2x\\ - \frac{15}{4} \sin x + \frac{5}{2} x + C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Henry Maltby
Jun 10, 2016

The first step is to expand:

( 1 + cos x ) 3 d x = cos 3 x + 3 cos 2 x + 3 cos x + 1 d x . \int (1 + \cos x)^3 \, dx = \int \cos^3x + 3\cos^2x + 3\cos x + 1 \, dx.

Now, it looks like we can use product-to-sum formulas to obtain cos 2 x = 1 2 + 1 2 cos ( 2 x ) \cos^2 x = \tfrac{1}{2} + \tfrac{1}{2} \cos (2x) and cos 3 x = 3 4 cos x + 1 4 cos ( 3 x ) \cos^3 x = \tfrac{3}{4} \cos x + \tfrac{1}{4} \cos (3x) . We can then plug these back into the integral:

cos 3 x + 3 cos 2 x + 3 cos x + 1 d x = 1 4 cos ( 3 x ) + 3 2 cos ( 2 x ) + 15 4 cos x + 5 2 d x . \int \cos^3x + 3\cos^2x + 3\cos x + 1 \, dx = \int \tfrac{1}{4} \cos (3x) + \tfrac{3}{2} \cos (2x) + \tfrac{15}{4} \cos x + \tfrac{5}{2} \, dx.

And finally, we can integrate cos ( n x ) d x = 1 n sin ( n x ) + c \int \cos(nx) \, dx = \tfrac{1}{n} \sin(nx) + c for each integer n > 0 n > 0 . So:

1 4 cos ( 3 x ) + 3 2 cos ( 2 x ) + 15 4 cos x + 5 2 d x = 1 12 sin ( 3 x ) + 3 4 sin ( 2 x ) + 15 4 sin x + 5 2 x + c . \int \tfrac{1}{4} \cos (3x) + \tfrac{3}{2} \cos (2x) + \tfrac{15}{4} \cos x + \tfrac{5}{2} \, dx = \boxed{\tfrac{1}{12} \sin (3x) + \tfrac{3}{4} \sin (2x) + \tfrac{15}{4} \sin x + \tfrac{5}{2} x + c.}

Chew-Seong Cheong
Jun 11, 2016

I = ( 1 + cos x ) 3 d x = ( 1 + 2 cos 2 x 2 1 ) d x = 8 cos 6 x 2 d x = 8 ( e x 2 i + e x 2 i 2 ) 6 d x = 1 8 ( e 3 x i + 6 e 2 x i + 15 e x i + 20 + 15 e x i + 6 e 2 x i + e 3 x i ) d x = 1 8 ( e 3 x i 3 i + 6 e 2 x i 2 i + 15 e x i i + 20 x 15 e x i i 6 e 2 x i 2 i e 3 x i 3 i ) + C = 1 4 ( 1 3 sin 3 x + 3 sin 2 x + 15 sin x + 10 x ) + C = 1 12 sin 3 x + 3 4 sin 2 x + 15 4 sin x + 5 2 x + C \begin{aligned} I & = \int (1+\cos x)^3 dx \\ & = \int \left(1+2\cos^2 \frac x2 - 1 \right) dx \\ & = 8 \int \cos^6 \frac x2 \ dx \\ & = 8 \int \left(\frac{e^{\frac x2 i} + e^{-\frac x2 i}}2 \right)^6 dx \\ & = \frac 18 \int \left(e^{3xi} + 6e^{2xi} + 15e^{xi} + 20 + 15 e^{-xi} +6 e^{-2xi} + e^{-3xi} \right) dx \\ & = \frac 18 \left(\frac{e^{3xi}}{3i} + 6\frac{e^{2xi}}{2i} + 15\frac{e^{xi}}{i} + 20x - 15\frac{e^{-xi}}{i} - 6\frac{e^{-2xi}}{2i} - \frac{e^{-3xi}}{3i} \right) + C \\ & = \frac 14 \left(\frac 13 \sin 3x + 3 \sin 2x + 15\sin x + 10x \right) + C \\ & = \boxed{\dfrac 1{12} \sin 3x + \dfrac 34 \sin 2x + \dfrac{15}4 \sin x + \dfrac 52 x + C} \end{aligned}

Nice discovery! This is exactly the reason the integrand is useful, as it allows us to recursively generate coefficients for later powers of trig functions. (Here, you outline the connection between the expansion of cos 6 x \cos^6x and the expansions of cos 3 x \cos^3x and lower powers.)

Henry Maltby - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...