Infinite Multiplication = = Infinite Addition

Algebra Level 5

5 5 5 5 = x 2 + 4 x 2 + 16 x 2 + 64 x 2 + \small \sqrt{5\sqrt{5\sqrt{5\sqrt{5\sqrt{\cdots}}}}} = \sqrt{x^2 + \sqrt{4x^2 + \sqrt{16x^2 + \sqrt{64x^2 + \sqrt{\cdots}}}}}

If x x is a positive number satisfying the equation above, find x x .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jack Rawlin
Feb 10, 2016

y = 5 5 5 5 y = \sqrt{5\sqrt{5\sqrt{5\sqrt{5\sqrt{\cdots}}}}}

y = 5 y y = \sqrt{5y}

y 2 = 5 y y^2 = 5y

y 2 5 y = 0 y^2 - 5y = 0

y ( y 5 ) = 0 y(y - 5) = 0

y = 0 , 5 y = 0,~ 5


x + 1 = ( x + 1 ) x + 1 = \color{#D61F06}{(x + 1)}

x + 1 = ( x + 1 ) 2 x + 1 = \sqrt{(x + 1)^2}

x + 1 = x 2 + ( 2 x + 1 ) x + 1 = \sqrt{x^2 + \color{#D61F06}{(2x + 1)}}

x + 1 = x 2 + ( 2 x + 1 ) 2 x + 1 = \sqrt{x^2 + \sqrt{(2x + 1)^2}}

x + 1 = x 2 + 4 x 2 + ( 4 x + 1 ) x + 1 = \sqrt{x^2 + \sqrt{4x^2 + \color{#D61F06}{(4x + 1)}}}

x + 1 = x 2 + 4 x 2 + ( 4 x + 1 ) 2 x + 1 = \sqrt{x^2 + \sqrt{4x^2 + \sqrt{(4x + 1)^2}}}

x + 1 = x 2 + 4 x 2 + 16 x 2 + ( 8 x + 1 ) x + 1 = \sqrt{x^2 + \sqrt{4x^2 + \sqrt{16x^2 + \color{#D61F06}{(8x + 1)}}}}

x + 1 = x 2 + 4 x 2 + 16 x 2 + ( 8 x + 1 ) 2 x + 1 = \sqrt{x^2 + \sqrt{4x^2 + \sqrt{16x^2 + \sqrt{(8x + 1)^2}}}}

x + 1 = x 2 + 4 x 2 + 16 x 2 + 64 x 2 + ( 16 x + 1 ) x + 1 = \sqrt{x^2 + \sqrt{4x^2 + \sqrt{16x^2 + \sqrt{64x^2 + \color{#D61F06}{(16x + 1)}}}}}

x + 1 = x 2 + 4 x 2 + 16 x 2 + 64 x 2 + x + 1 = \sqrt{x^2 + \sqrt{4x^2 + \sqrt{16x^2 + \sqrt{64x^2 + \sqrt{\cdots}}}}}


5 5 5 5 = x 2 + 4 x 2 + 16 x 2 + 64 x 2 + \small \sqrt{5\sqrt{5\sqrt{5\sqrt{5\sqrt{\cdots}}}}} = \sqrt{x^2 + \sqrt{4x^2 + \sqrt{16x^2 + \sqrt{64x^2 + \sqrt{\cdots}}}}}

0 , 5 = x 2 + 4 x 2 + 16 x 2 + 64 x 2 + 0,~ 5 = \sqrt{x^2 + \sqrt{4x^2 + \sqrt{16x^2 + \sqrt{64x^2 + \sqrt{\cdots}}}}}

0 , 5 = x + 1 0,~ 5 = x + 1

x = 1 , 4 x = -1,~ 4

x > 0 x 1 , x = 4 x > 0 \therefore x \neq -1,~ x = 4

x = 4 \Large \boxed{x = 4}

Beautiful solution without words.

Abdur Rehman Zahid - 5 years, 4 months ago

How do you justify the convergence of the sequence?

Shourya Pandey - 5 years, 4 months ago

Log in to reply

Which sequence? The LHS or the RHS? I can't answer your question properly otherwise.

Jack Rawlin - 5 years, 4 months ago

For the RHS, Herschfeld's convergence theorem.

Joe Mansley - 1 year, 10 months ago

Nice Solution!

Anik Mandal - 5 years, 4 months ago

amazing solution....u just need to focus on how the numbers are moving -- 1x, 4x, 16x and then it strikes you!!

Akash Mittal - 5 years, 4 months ago

Can the term on the LHS ever be equal to zero?

Saurabh Chaturvedi - 5 years, 4 months ago

Log in to reply

Another way to think of the LHS is to think of it as an addition of powers.

5 5 5 5 = 5 1 2 5 1 4 5 1 8 5 1 16 \sqrt{5\sqrt{5\sqrt{5\sqrt{5\sqrt{\cdots}}}}} = 5^\frac{1}{2} \cdot 5^\frac{1}{4} \cdot 5^\frac{1}{8} \cdot 5^\frac{1}{16} \cdots

5 1 2 + 1 4 + 1 8 + 1 16 + \large 5^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots}

5 n = 0 1 2 ( 1 2 ) n \Large 5^{\sum_{n = 0}^{\infty}{\frac{1}{2} \cdot \left(\frac{1}{2}\right)^n}}

n = 0 1 2 ( 1 2 ) n = 1 \sum_{n = 0}^{\infty}{\frac{1}{2} \cdot \left(\frac{1}{2}\right)^n} = 1

5 1 = 5 5^1 = 5


In other words, no, the LHS can never be equal to zero unless the number inside is zero itself. As to why I put it as a possible answer in my solution; I put it in as you could calculate it without needing to know how to use infinite sums, thus making it easier to calculate in this case.

Jack Rawlin - 5 years, 4 months ago

I was following this method x 2 + 2 × x 2 + x 2 . . . . . = z \sqrt{x^2+2\times\sqrt{x^2+\sqrt{x^2.....}}}=z

Let y = x 2 + x 2 . . . . . \sqrt{x^2+\sqrt{x^2.....}}

y 2 = x 2 + y y^2=x^2+y

y = 1 + 1 + x 2 2 y = \frac{1+\sqrt{1+x^2}}{2} Therefore z = x 2 + 1 + 1 + x 2 z = \sqrt{x^2+1+\sqrt{1+x^2}}

When I solved this eq by keeping it equal to 5, I didn't get an integer solution. Can you please help me in finding error in my method

Animesh Singh - 5 years, 4 months ago

Log in to reply

If you were trying to make z z equal to the RHS of the equation then you've made a small mistake.

x 2 + 2 x 2 + x 2 + x 2 + \sqrt{x^2 + 2\sqrt{x^2 + \sqrt{x^2 + \sqrt{x^2 + \cdots}}}}

x 2 + 4 x 2 + 4 x 2 + x 2 + \sqrt{x^2 + \sqrt{4x^2 + 4\sqrt{x^2 + \sqrt{x^2 + \cdots}}}}

x 2 + 4 x 2 + 16 x 2 + 16 x 2 + \sqrt{x^2 + \sqrt{4x^2 + \sqrt{16x^2 + 16\sqrt{x^2 + \cdots}}}}

x 2 + 4 x 2 + 16 x 2 + 256 x 2 + \sqrt{x^2 + \sqrt{4x^2 + \sqrt{16x^2 + \sqrt{256x^2 + \cdots}}}}

As you can see when expanding your version you end up excluding 64 x 2 64x^2 from the nested radical, in other words:

x 2 + 2 x 2 + x 2 + x 2 + x 2 + 4 x 2 + 16 x 2 + 64 x 2 + \small \sqrt{x^2 + 2\sqrt{x^2 + \sqrt{x^2 + \sqrt{x^2 + \cdots}}}} \neq \sqrt{x^2 + \sqrt{4x^2 + \sqrt{16x^2 + \sqrt{64x^2 + \sqrt{\cdots}}}}}


My advice would be to check more terms before assuming you have the answer. Other than that however, the rest of your solution was algebraically sound.

Jack Rawlin - 5 years, 4 months ago

Log in to reply

Thank u. I will certainly follow your advice

Animesh Singh - 5 years, 4 months ago

I want to know how you came up with this method, Animesh Singh ?

Aditya Sky - 5 years, 3 months ago

Amazing. My problem was that I couldn't find an expression for the recursion on the RHS. How did you come to find your x + 1 expression?

N Solomon - 5 years, 4 months ago

Log in to reply

I started with with the addition of two variables; a a and b b and expanded from there.

a + b = ( a + b ) 2 a + b = \sqrt{(a + b)^2}

a + b = a 2 + 2 a b + b 2 a + b = \sqrt{a^2 + 2ab + b^2}

a + b = a 2 + ( 2 a b + b 2 ) 2 a + b = \sqrt{a^2 + \sqrt{(2ab + b^2)^2}}

a + b = a 2 + 4 a 2 b 2 + 4 a b 3 + b 4 a + b = \sqrt{a^2 + \sqrt{4a^2b^2 + 4ab^3 + b^4}}

a + b = a 2 + 4 a 2 b 2 + ( 4 a b 3 + b 4 ) 2 a + b = \sqrt{a^2 + \sqrt{4a^2b^2 + \sqrt{(4ab^3 + b^4)^2}}}

a + b = a 2 + 4 a 2 b 2 + 16 a 2 b 6 + 8 a b 7 + b 8 a + b = \sqrt{a^2 + \sqrt{4a^2b^2 + \sqrt{16a^2b^6 + 8ab^7 + b^8}}}

a + b = a 2 + 4 a 2 b 2 + 16 a 2 b 6 + ( 8 a b 7 + b 8 ) 2 a + b = \sqrt{a^2 + \sqrt{4a^2b^2 + \sqrt{16a^2b^6 + \sqrt{(8ab^7 + b^8)^2}}}}

a + b = a 2 + 4 a 2 b 2 + 16 a 2 b 6 + ( 64 a 2 b 14 + 16 a b 15 + b 16 a + b = \sqrt{a^2 + \sqrt{4a^2b^2 + \sqrt{16a^2b^6 + \sqrt{(64a^2b^{14} + 16ab^{15} + b^{16}}}}}

a + b = a 2 + 4 a 2 b 2 + 16 a 2 b 6 + 64 a 2 b 14 + ( 16 a b 15 + b 16 ) 2 a + b = \sqrt{a^2 + \sqrt{4a^2b^2 + \sqrt{16a^2b^6 + \sqrt{64a^2b^{14} + \sqrt{(16ab^{15} + b^{16})^2}}}}}

a + b = a 2 + 4 a 2 b 2 + 16 a 2 b 6 + 64 a 2 b 14 + a + b = \sqrt{a^2 + \sqrt{4a^2b^2 + \sqrt{16a^2b^6 + \sqrt{64a^2b^{14} + \sqrt{\cdots}}}}}

I then made b b equal to 1 1 and a a equal to x x

x + 1 = x 2 + 4 x 2 + 16 x 2 + 64 x 2 + x + 1 = \sqrt{x^2 + \sqrt{4x^2 + \sqrt{16x^2 + \sqrt{64x^2 + \sqrt{\cdots}}}}}

As far as I know there's no other way to go about it.

Jack Rawlin - 5 years, 4 months ago

But what are you supposed to assume is in the center of all those nested radicals on the LHS? The equation in the problems seems a little incomplete without that.

David Ortiz - 5 years, 4 months ago

Nice solution! I was stuck on the later half of the problem.

Yugendra Uppalapati - 9 months, 3 weeks ago
Nikola Djuric
Feb 15, 2016

Notist (2²ⁿx²+√(4*2²ⁿx²+√…)=(2ⁿx+1)² For n=0 : x²+√(4x²+√(16x²+...)...)=(x+1)² so √(x²+√(4x²+....)...)=|x+1|=x+1 Ifx>-1, left side is Lim5^((1/2+1/4+1/8+...+1/2ⁿ))= Lim(5^(1-1/2ⁿ))=5^lim(1-0.5ⁿ)=5^1=5 So x+1=5, so x=4

Aman Rckstar
Feb 11, 2016

Easy ,if u have learned wiki

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...