Just another Integral

Calculus Level 4

Find a + b a + b if

0 2017 e cos ( { x } π ) e cos ( { x } π ) + e cos ( { x } π ) d x = a b \large \int_{0}^{2017}{\frac{e^{\cos(\{x\}\pi)}}{e^{\cos(\{x\}\pi)} + e^{-\cos(\{x\}\pi)}}} dx = \frac ab

Notes :

  • gcd ( a , b ) = 1 \gcd{(a,b)} = 1
  • { x } \{x\} denotes the fractional part of x x .
  • e e is the Euler's number ( 2.71828... \approx 2.71828... )


The answer is 2019.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marco Brezzi
Aug 18, 2017

Let

I = 0 2017 e cos ( π { x } ) e cos ( π { x } ) + e cos ( π { x } ) d x I=\displaystyle\int_0^{2017}\dfrac{e^{\cos(\pi\{x\})}}{e^{\cos(\pi\{x\})}+e^{-\cos(\pi\{x\})}}dx

Since the function { x } \{x\} is periodic with period 1 1 , we can rewrite the integral as follows

I = 2017 0 1 e cos ( π x ) e cos ( π x ) + e cos ( π x ) d x I=2017\displaystyle\int_0^1\dfrac{e^{\cos(\pi x)}}{e^{\cos(\pi x)}+e^{-\cos(\pi x)}}dx

. .

We now have to evaluate

I 1 = 0 1 e cos ( π x ) e cos ( π x ) + e cos ( π x ) d x I_1=\displaystyle\int_0^1\dfrac{e^{\cos(\pi x)}}{e^{\cos(\pi x)}+e^{-\cos(\pi x)}}dx

Via the substitution u = π x , d x = d u π u=\pi x,dx=\dfrac{du}{\pi}

I 1 = 1 π 0 π e cos ( u ) e cos ( u ) + e cos ( u ) d u I_1=\dfrac{1}{\pi}\displaystyle\int_0^{\pi}\dfrac{e^{\cos(u)}}{e^{\cos(u)}+e^{-\cos(u)}}du

Using the integration trick

a b f ( x ) = a b f ( a + b x ) \displaystyle\int_a^b f(x)=\displaystyle\int_a^b f(a+b-x)

I 1 = 1 π 0 π e cos ( u ) e cos ( u ) + e cos ( u ) d u = 1 π 0 π e cos ( π u ) e cos ( π u ) + e cos ( π u ) d u = 1 π 0 π e cos ( u ) e cos ( u ) + e cos ( u ) d u \begin{aligned} \Longrightarrow I_1&=\dfrac{1}{\pi}\displaystyle\int_0^{\pi}\dfrac{e^{\cos(u)}}{e^{\cos(u)}+e^{-\cos(u)}}du\\ &=\dfrac{1}{\pi}\displaystyle\int_0^{\pi}\dfrac{e^{\cos(\pi-u)}}{e^{\cos(\pi-u)}+e^{-\cos(\pi-u)}}du\\ &=\dfrac{1}{\pi}\displaystyle\int_0^{\pi}\dfrac{e^{-\cos(u)}}{e^{-\cos(u)}+e^{\cos(u)}}du \end{aligned}

Adding up

2 I 1 = 1 π 0 π e cos ( u ) + e cos ( u ) e cos ( u ) + e cos ( u ) d u = 1 π 0 π d u = 1 π π = 1 I 1 = 1 2 \begin{aligned} 2I_1&=\dfrac{1}{\pi}\displaystyle\int_0^{\pi}\dfrac{e^{\cos(u)}+e^{-\cos(u)}}{e^{\cos(u)}+e^{-\cos(u)}}du\\ &=\dfrac{1}{\pi}\displaystyle\int_0^{\pi} du\\ &=\dfrac{1}{\pi}\cdot \pi=1\Longrightarrow I_1=\dfrac{1}{2} \end{aligned}

Hence

I = 2017 I 1 = 2017 2 = a b I=2017I_1=\dfrac{2017}{2}=\dfrac{a}{b}

a + b = 2017 + 2 = 2019 \Longrightarrow a+b=2017+2=\boxed{2019}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...