Find if
Notes :
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let
I = ∫ 0 2 0 1 7 e cos ( π { x } ) + e − cos ( π { x } ) e cos ( π { x } ) d x
Since the function { x } is periodic with period 1 , we can rewrite the integral as follows
I = 2 0 1 7 ∫ 0 1 e cos ( π x ) + e − cos ( π x ) e cos ( π x ) d x
.
We now have to evaluate
I 1 = ∫ 0 1 e cos ( π x ) + e − cos ( π x ) e cos ( π x ) d x
Via the substitution u = π x , d x = π d u
I 1 = π 1 ∫ 0 π e cos ( u ) + e − cos ( u ) e cos ( u ) d u
Using the integration trick
∫ a b f ( x ) = ∫ a b f ( a + b − x )
⟹ I 1 = π 1 ∫ 0 π e cos ( u ) + e − cos ( u ) e cos ( u ) d u = π 1 ∫ 0 π e cos ( π − u ) + e − cos ( π − u ) e cos ( π − u ) d u = π 1 ∫ 0 π e − cos ( u ) + e cos ( u ) e − cos ( u ) d u
Adding up
2 I 1 = π 1 ∫ 0 π e cos ( u ) + e − cos ( u ) e cos ( u ) + e − cos ( u ) d u = π 1 ∫ 0 π d u = π 1 ⋅ π = 1 ⟹ I 1 = 2 1
Hence
I = 2 0 1 7 I 1 = 2 2 0 1 7 = b a
⟹ a + b = 2 0 1 7 + 2 = 2 0 1 9