A calculus problem by Jose Sacramento

Calculus Level 3

0 π / 2 sin x sin x + cos x d x \large \int_0^{\pi /2} \dfrac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx

Find the value of the closed form of the above integral to three decimal places.


The answer is 0.785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jessica Wang
Sep 16, 2016

For a function f f and real numbers a < b a < b ,

a b f ( x ) d x = a b f ( a + b x ) d x . \int_a^b f(x) \, dx = \int_a^b f(a+b-x) \, dx. Therefore we have:

I = 0 π 2 sin x sin x + cos x d x I=\int_{0}^{\frac{\pi}{2}}\frac{\sqrt{\sin{x}}}{\sqrt{\sin{x}}+\sqrt{\cos{x}}}\: dx

= 0 π 2 sin ( 0 + π 2 x ) sin x + cos x d x =\int_{0}^{\frac{\pi}{2}}\frac{\sqrt{\sin{(0+\frac{\pi}{2}-x)}}}{\sqrt{\sin{x}}+\sqrt{\cos{x}}}\: dx

I = 0 π 2 cos x sin x + cos x d x I=\int_{0}^{\frac{\pi}{2}}\frac{\sqrt{\cos{x}}}{\sqrt{\sin{x}}+\sqrt{\cos{x}}}\: dx

2 I = 0 π 2 sin x + cos x sin x + cos x d x \therefore 2I=\int_{0}^{\frac{\pi}{2}}\frac{\sqrt{\sin{x}}+\sqrt{\cos{x}}}{\sqrt{\sin{x}}+\sqrt{\cos{x}}}\: dx

= 0 π 2 1 d x =\int_{0}^{\frac{\pi}{2}}1\: dx

= π 2 . =\frac{\pi}{2}.

I = π 4 = 0.785 , \therefore I=\frac{\pi}{4}=\boxed{0.785}\, ,

to 3 decimal places.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...