A calculus problem by Jose Sacramento

Calculus Level 5

lim n n ( n + 1 ) ( n + 2 ) ( n + n ) n n = ? \large \lim_{n\to\infty} \dfrac{ \sqrt[n]{ n(n+1)(n+2) \cdots (n+n)} }{n} = \, ?

Give your answer to 3 decimal places.


The answer is 1.472.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 26, 2016

Relevant wiki: Riemann Sums

L = lim n n ( n + 1 ) ( n + 2 ) ( n + n ) n n = lim n n n n ( 1 + 1 n ) ( 1 + 2 n ) ( 1 + n n ) n n = lim n n 1 n k = 0 n ( 1 + k n ) 1 n = lim n exp ( ln n n + 1 n k = 0 n ln ( 1 + k n ) ) A / case, L’H o ˆ pital’s rule applies. = exp ( 1 n 1 + 0 1 ln ( 1 + x ) d x ) By Riemann sums = exp ( 0 + ( 1 + x ) ln ( 1 + x ) x 0 1 ) = exp ( 2 ln 2 1 ln 1 + 0 ) = 4 e 1.472 \begin{aligned} L & = \lim_{n \to \infty} \frac {\sqrt[n]{n(n+1)(n+2)\cdots(n+n)}}n \\ & = \lim_{n \to \infty} \frac {\sqrt[n]{n \cdot n^n \left(1 + \frac 1n \right) \left(1 + \frac 2n \right) \cdots \left(1 + \frac nn \right)}}n \\ & = \lim_{n \to \infty} n^\frac 1n \prod_{k=0}^n \left(1 + \frac kn \right)^\frac 1n \\ & = \lim_{n \to \infty} \exp \left({\color{#3D99F6}\frac {\ln n}n} + \color{#D61F06}{\frac 1n \sum_{k=0 }^n \ln \left(1 + \frac kn \right)} \right) & \small \color{#3D99F6}\text{A }\infty/\infty \text{ case, L'Hôpital's rule applies.} \\ & = \exp \left({\color{#3D99F6}\frac {\frac 1n}1} + \color{#D61F06} {\int_0^1 \ln (1+x) \ dx} \right) & \small \color{#D61F06}\text{By Riemann sums } \\ & = \exp \left({\color{#3D99F6}0} + \color{#D61F06}{(1+x)\ln (1+x) - x\bigg|_0^1}\right) \\ & = \exp \left( \color{#D61F06}{2\ln 2 - 1 - \ln 1 + 0} \right) \\ & = \frac 4e \approx \boxed{1.472} \end{aligned}

did the same!

Prakhar Bindal - 4 years, 8 months ago

In the second line, we have n 1 n n^\frac{1}{n} in the numerator. But, do we have that in the third line?

Atomsky Jahid - 3 years, 3 months ago

Log in to reply

Thanks, my mistake. I have changed the solution.

Chew-Seong Cheong - 3 years, 3 months ago
Mark Hennings
Sep 25, 2016

Relevant wiki: Stirling's Formula

We have n ( n + 1 ) ( n + n ) n n = 1 n ( n ( 2 n ) ! n ! ) 1 n 4 e ( 2 n ) 1 2 n n \frac{\sqrt[n]{n(n+1)\cdots (n+n)}}{n} \; = \; \frac{1}{n}\left(\frac{n (2n)!}{n!}\right)^{\frac{1}{n}} \; \sim \; \frac{4}{e} (2n)^{\frac{1}{2n}} \hspace{1cm} n \to \infty using Stirling's Approximation. Thus the limit is 4 e 1.471517765 \frac{4}{e} \approx \boxed{1.471517765} . To 3DP, this should be 1.472 1.472 , not 1.471 1.471 .

Thanks. I've updated the answer from 1.471 to 1.472. Those who previously answered 1.472 has been marked correct.

In future, if you spot any errors with a problem, you can “report” it by selecting "report problem" in the “line line line” menu in the top right corner. This will notify the problem creator who can fix the issues.

Brilliant Mathematics Staff - 4 years, 8 months ago

Log in to reply

Well yes, but, (A) the system accepted my original answer of 1.472 1.472 , so my comment was for informational purposes only. (B) authors cannot change the answers...

Mark Hennings - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...