A calculus problem by Jose Sacramento

Calculus Level 3

lim n k = 1 n k k + 1 n = ? \large \lim_{n\to\infty} \dfrac{\displaystyle \sum_{k=1}^n \frac k{k+1}}{n} = \, ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Sep 27, 2016

The limit can be found using Stolz–Cesàro theorem as follows.

Theorem 1 (the / \infty/\infty case) :
Let ( a n ) n N (a_n)_{n\in\mathbb N} and ( b n ) n N (b_n)_{n\in\mathbb N} be two sequences of real numbers such that
(a) 0 < b 1 < b 2 < < b n < 0<b_1 < b_2 < \cdots < b_n < \cdots and lim n b n = \displaystyle \lim_{n\to\infty} b_n = \infty .
(b) lim n a n + 1 a n b n + 1 b n = l R \displaystyle \lim_{n\to\infty} \dfrac{a_{n+1} - a_n}{b_{n+1} - b_n} = l \in \mathbb R .


Then, lim n a n b n \displaystyle \lim_{n\to\infty} \dfrac{a_n}{b_n} exists and is equal to l l .

In this case, a n = k = 1 n k k + 1 \displaystyle a_n = \sum_{k=1}^n \frac k{k+1} and b n = n b_n = n . Therefore,

lim n a n + 1 a n b n + 1 b n = lim n k = 1 n + 1 k k + 1 k = 1 n k k + 1 ( n + 1 ) n = lim n n + 1 n + 2 1 = lim n n + 1 n + 2 = lim n 1 + 1 n 1 + 2 n = 1 \begin{aligned} \lim_{n\to\infty} \dfrac{a_{n+1} - a_n}{b_{n+1} - b_n} & = \lim_{n\to\infty} \frac {\sum_{k=1}^{n+1} \frac k{k+1} - \sum_{k=1}^n \frac k{k+1}}{(n+1)-n} \\ & = \lim_{n\to\infty} \frac {\frac {n+1}{n+2}}{1} \\ & = \lim_{n\to\infty} \frac {n+1}{n+2} \\ & = \lim_{n\to\infty} \frac {1+\frac 1n}{1+\frac 2n} \\ & = \boxed{1} \end{aligned}

Great.. Thanks Chew-Seong Cheong. Cheers

Jose Sacramento - 4 years, 8 months ago

Generalisation of this problem:

Proposition.- If the sequence ( a n ) n = 1 (a_n)_{n =1}^{\infty} fulfills lim n a n = a \displaystyle \lim_{n\to \infty} a_n = a where a a is a finite number, then lim n k = 1 n a k n = a \large \displaystyle \lim_{n\to \infty} \frac{\sum_{k =1}^{n} a_k}{n} = a Sketch of Proof.- Applying Stolz-Cesaro Theorem if a 0 a \neq 0 . If a = 0 a = 0 it is "trivial" q.e.d \square \\ \quad

In this case, lim k k k + 1 = 1 \lim_{k\to \infty} \frac{k}{k+1} = 1 \Rightarrow lim n k = 1 n k k + 1 n = 1 \large \displaystyle \lim_{n\to \infty} \frac{\sum_{k =1}^{n} \frac{k}{k+1}}{n} = 1

Other example.- lim n k = 1 n 2 k 2 ( k + 1 ) 2 n = 2 \large \displaystyle \lim_{n\to \infty} \frac{\sum_{k =1}^{n} \frac{2k^2}{(k+1)^2}}{n} = 2

Peter Van het Dak
Sep 26, 2016

The sum will become a large number added by infinity The n will be infinity Those two devided by one other Gives 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...