A calculus problem by Jose Sacramento

Calculus Level 4

0 π d x ( 5 3 cos x ) 3 \large \int_0^\pi \dfrac {dx}{ (5-3\cos x)^3}

If the integral above can be expressed as A π B \dfrac {A\pi}B , where A A and B B are coprime positive integers, find A + B A+B .


The answer is 2107.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 30, 2016

I = 0 π d x ( 5 3 cos x ) 3 Let t = tan x 2 , d x = 2 d t 1 + t 2 , cos x = 1 t 2 1 + t 2 = 0 2 d t ( 1 + t 2 ) ( 5 3 ( 1 t 2 1 + t 2 ) ) 3 = 0 2 ( 1 + t 2 ) 2 ( 2 + 8 t 2 ) 3 d t = 0 ( 1 + t 2 ) 2 4 ( 1 + 4 t 2 ) 3 d t By partial fractions = 1 64 0 1 1 + 4 t 2 d x + 3 32 0 1 ( 1 + 4 t 2 ) 2 d x + 9 64 0 1 ( 1 + 4 t 2 ) 3 d x \begin{aligned} I & = \int_0^\pi \frac {dx}{(5-3\cos x)^3} \quad \quad \small \color{#3D99F6}{\text{Let }t=\tan \frac x2, \ dx = \frac {2 \ dt}{1+t^2}, \ \cos x = \frac {1-t^2}{1+t^2}} \\ & = \int_0^\infty \frac {2 \ dt}{(1+t^2) \left( 5-3\left(\frac {1-t^2}{1+t^2}\right) \right)^3} \\ & = \int_0^\infty \frac {2 (1+t^2)^2}{ \left(2+ 8 t^2 \right)^3}dt \\ & = \int_0^\infty \frac {(1+t^2)^2}{4 \left(1+ 4 t^2 \right)^3}dt \quad \quad \small \color{#3D99F6}{\text{By partial fractions}} \\ & = \frac 1{64} \int_0^\infty \frac 1{1+4t^2} dx + \frac 3{32} \int_0^\infty \frac 1{(1+4t^2)^2} dx + \frac 9{64} \int_0^\infty \frac 1{(1+4t^2)^3} dx \end{aligned}

Now, let u = 4 t 2 t = u 1 2 2 d t = u 1 2 4 d u u = 4 t^2 \implies t = \dfrac {u^\frac 12}2 \implies dt = \dfrac {u^{-\frac 12}}4 du . Then we have:

I = 1 64 0 1 1 + 4 t 2 d x + 3 32 0 1 ( 1 + 4 t 2 ) 2 d x + 9 64 0 1 ( 1 + 4 t 2 ) 3 d x = 1 256 0 u 1 2 1 + u d u + 3 128 0 u 1 2 ( 1 + u ) 2 d u + 9 256 0 u 1 2 ( 1 + u ) 3 d u = 1 256 B ( 1 2 , 1 2 ) + 3 128 B ( 1 2 , 3 2 ) + 9 256 B ( 1 2 , 5 2 ) B ( ) is beta function = 1 256 Γ ( 1 2 ) Γ ( 1 2 ) Γ ( 1 ) + 3 128 Γ ( 1 2 ) Γ ( 3 2 ) Γ ( 2 ) + 9 256 Γ ( 1 2 ) Γ ( 5 2 ) Γ ( 3 ) Γ ( ) is gamma function = 1 256 π π 0 ! + 3 128 π 1 2 π 1 ! + 9 256 π 1 2 3 2 π 2 ! = ( 1 256 + 3 256 + 27 2048 ) π = 59 π 2048 \begin{aligned} I & = \frac 1{64} \int_0^\infty \frac 1{1+4t^2} dx + \frac 3{32} \int_0^\infty \frac 1{(1+4t^2)^2} dx + \frac 9{64} \int_0^\infty \frac 1{(1+4t^2)^3} dx \\ & = \frac 1{256} \int_0^\infty \frac {u^{-\frac 12}}{1+u} du + \frac 3{128} \int_0^\infty \frac {u^{-\frac 12}}{(1+u)^2} du + \frac 9{256} \int_0^\infty \frac {u^{-\frac 12}}{(1+u)^3} du \\ & = \frac 1{256} \text B \left(\frac 12, \frac 12 \right) + \frac 3{128} \text B \left(\frac 12, \frac 32 \right) + \frac 9{256} \text B \left(\frac 12, \frac 52 \right) \ \ \ \ \ \ \ \ \small \color{#3D99F6}{\text{B}(\cdot) \text{ is beta function}} \\ & = \frac 1{256} \cdot \frac {\Gamma \left(\frac 12 \right)\Gamma \left(\frac 12 \right)}{\Gamma \left(1 \right)} + \frac 3{128} \cdot \frac {\Gamma \left(\frac 12 \right)\Gamma \left(\frac 32 \right)}{\Gamma \left(2 \right)} + \frac 9{256} \cdot \frac {\Gamma \left(\frac 12 \right)\Gamma \left(\frac 52 \right)}{\Gamma \left(3 \right)} \ \ \ \ \ \ \ \ \small \color{#3D99F6}{\Gamma (\cdot) \text{ is gamma function}} \\ & = \frac 1{256} \cdot \frac {\sqrt \pi \cdot \sqrt \pi}{0!} + \frac 3{128} \cdot \frac {\sqrt \pi \cdot \frac 12 \cdot \sqrt \pi}{1!} + \frac 9{256} \cdot \frac {\sqrt \pi \cdot \frac 12 \cdot \frac 32 \cdot \sqrt \pi}{2!} \\ & = \left(\frac 1{256} + \frac 3{256} + \frac {27}{2048} \right) \pi \\ & = \frac {59 \pi}{2048} \end{aligned}

A + B = 59 + 2048 = 2107 \implies A+B = 59+2048 = \boxed{2107}


References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...