A calculus problem by Jose Sacramento

Calculus Level 3

0 π 1 + sin x d x = ? \large \int_0^\pi \sqrt{1 + \sin x} \, dx = \, ?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 π 1 + sin x d x As integrand is symmetrical on x = π 2 = 2 0 π 2 1 + sin x d x By a b f ( x ) d x = a b f ( a + b x ) d x = 2 0 π 2 1 + cos x d x sin ( π 2 x ) = cos x = 2 0 π 2 1 + 2 cos 2 x 2 1 d x = 2 0 π 2 2 cos x 2 d x = 4 2 sin x 2 0 π 2 = 4 2 ( 1 2 0 ) = 4 \begin{aligned} I & = \int_0^\pi \sqrt{1+\sin x} \ dx & \small \color{#3D99F6}{\text{As integrand is symmetrical on }x=\frac \pi 2} \\ & = 2 \int_0^\frac \pi 2 \sqrt{1+\sin x} \ dx & \small \color{#3D99F6}{\text{By }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = 2 \int_0^\frac \pi 2 \sqrt{1+\color{#3D99F6}{\cos x}} \ dx & \small \color{#3D99F6}{\sin \left(\frac \pi 2 - x\right) = \cos x} \\ & = 2 \int_0^\frac \pi 2 \sqrt{1+2\cos^2 \frac x2 -1} \ dx \\ & = 2 \int_0^\frac \pi 2 \sqrt2 \cos \frac x2 \ dx \\ & = 4\sqrt 2 \sin \frac x2 \ \bigg|_0^\frac \pi 2 \\ & = 4\sqrt 2 \left(\frac 1{\sqrt 2} - 0\right) \\ & = \boxed{4} \end{aligned}

Thansk a lot.Chew-Seong Cheong . I wish you have a wonderfull day.. Cheers

Jose Sacramento - 4 years, 8 months ago
Siddharth Yadav
Oct 2, 2016

1+sinx ={ [sin(x/2)]^2+[cos(x/2)]^2 } +2sin(x/2)cos(x/2).
= (1+sinx)^1/2= sin (x/2) +cos (x/2)

On indefinitely integrating we get the integrated expression as =2sin(x/2) -2 cos (x/2)
On putting the limits in the expression above = [ (0+2) - (-2+0)] =4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...