A calculus problem by Jose Sacramento

Calculus Level 4

0 1 0 1 x y ( x + y ) 3 d x d y + 0 1 0 1 x y ( x + y ) 3 d y d x = ? \int_0^1 \int_0^1 \dfrac{ x-y} {(x+y)^3} \, dx dy + \int_0^1 \int_0^1 \dfrac{ x-y} {(x+y)^3} \, dy dx = \, ?

1 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Abhishek Sinha
Feb 24, 2016

0 1 0 1 x y ( x + y ) 3 d x d y = 0 1 0 1 x ( x + y ) 3 d x d y 0 1 0 1 y ( x + y ) 3 d x d y = ( a ) 0 1 0 1 x ( x + y ) 3 d x d y 0 1 0 1 x ( x + y ) 3 d x d y = 0 \int_{0}^{1} \int_{0}^{1} \frac{x-y}{(x+y)^3} dxdy = \int_{0}^{1} \int_{0}^{1} \frac{x}{(x+y)^3} dxdy- \int_{0}^{1} \int_{0}^{1} \frac{y}{(x+y)^3} dxdy\stackrel{(a)}{=}\int_{0}^{1} \int_{0}^{1} \frac{x}{(x+y)^3} dxdy- \int_{0}^{1} \int_{0}^{1} \frac{x}{(x+y)^3} dxdy=0 Where the equality (a) is obtained by interchanging x x and y y .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...