A calculus problem by Jose Sacramento

Calculus Level 3

0 2 π 1 1 + tan 4 x d x \large \int_0^{2\pi} \dfrac1{1+\tan^4 x} \, dx

The integral above has a closed form. Find the value of this closed form.

Give your answer to 3 decimal places.


The answer is 3.1415.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 12, 2016

Let I = 0 2 π 1 1 + tan 4 x d x \displaystyle I=\int_0^{2 \pi} \frac 1 {1+\tan ^4 x} dx .

We can rewrite I I as I = π π 1 1 + tan 4 x d x \displaystyle I=\int_{-\pi}^{\pi} \frac 1 {1+\tan^4 x} dx .

We note that the intrgrant is an even function, therefore: I = 2 0 π 1 1 + tan 4 x d x \displaystyle I=2 \int_0^{\pi} \frac 1 {1+\tan^4 x} dx

We also note that the integrant has a reflection symmetry across x = π 2 x=\frac \pi 2 , therefore:

I = 4 0 π 2 1 1 + tan 4 x d x \begin{aligned} I&=4\int_0^{\frac \pi 2} \frac 1 {1+\tan^4 x} dx \end{aligned}

Using the "integration backward": a b f ( x ) d x = a b f ( a + b x ) d x \displaystyle \int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx , we have:

I = 2 0 π 2 1 1 + tan 4 x + 1 1 + tan 4 ( π 2 x ) d x = 2 0 π 2 1 1 + tan 4 x + 1 1 + cot 4 x d x = 2 0 π 2 1 1 + tan 4 x + 1 1 + 1 tan 4 x d x = 2 0 π 2 1 1 + tan 4 x + tan 4 x tan 4 x + 1 d x = 2 0 π 2 1 d x = π 3.141 \begin{aligned} I & =2 \int_0^{\frac \pi 2} \frac 1 {1+\tan^4 x} + \frac 1 {1 +\tan^4 \left(\frac \pi 2 - x\right)} dx \\ & =2 \int_0^{\frac \pi 2} \frac 1 {1+\tan^4 x} + \frac 1 {1 +\cot^4 x} dx \\ & =2 \int_0^{\frac \pi 2} \frac 1 {1+\tan^4 x} + \frac 1 {1 +\frac 1 {\tan^4 x}} dx \\ & =2 \int_0^{\frac \pi 2} \frac 1 {1+\tan^4 x} + \frac {\tan^4 x} {\tan^4 x+1} dx \\ & =2 \int_0^{\frac \pi 2} 1 \ dx \\ & = \pi \approx \boxed{3.141} \end{aligned} .

GREAT.. Thank you Chew-Seong Cheong .

Jose Sacramento - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...