A number theory problem by A Former Brilliant Member

The value of 1 1 2 + 1 2 2 + 1 3 2 + + 2 0 2 11^{2}+12^{2}+13^{2}+…………+20^{2} is?

2870 2485 385 3255

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

11^2+12^+13^2+……+20^2.
=[1^2+2^2+3^2+……+20^2]- [1^2+2^2+3^2+……+10^2] =[20(20+1)(40+1)- 10(10+1)(20+1)]/6 =2485

The formula of sum of squares from 1 to n is n ( n + 1 ) ( 2 n + 1 ) 6 . . . . . . We have (1 to 20) - (1 to 10). r e q u i r e d v a l u e i s = 20 21 41 10 11 21 6 = 210 ( 2 41 11 ) 6 = 35 71 = 2485. \text{The formula of sum of squares from 1 to n is}\\ \dfrac{n(n+1)(2n+1)}{6}......\text{We have (1 to 20) - (1 to 10).}\\\therefore~required~value~ is\\=\dfrac{20*21*41 - 10*11*21}{6}= \dfrac{210(2*41 - 11)}{6}= 35*71=2485.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...