An algebra problem by Keerthi Reddy

Algebra Level 2

8 1 1 / log 5 3 + 2 7 log 9 36 + 3 4 / log 7 9 = ? \large 81^{1/\log_5 3} + 27^{\log_9 36} + 3^{4 /\log_7 9} = \, ?


The answer is 890.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hung Woei Neoh
May 20, 2016

8 1 1 log 5 3 + 2 7 log 9 36 + 3 4 log 7 9 = ( 3 4 ) 1 ( log 3 3 log 3 5 ) + ( 3 3 ) log 3 36 log 3 9 + 3 4 ( log 3 9 log 3 7 ) = 3 4 × log 3 5 1 + 3 3 × log 3 36 2 + 3 4 log 3 7 2 = 3 4 log 3 5 + 3 3 2 log 3 36 + 3 2 log 3 7 \Large81^{\frac{1}{\log_5 3}} + 27^{\log_9 36} + 3^{\frac{4}{\log_7 9}}\\ =\Large(3^4)^{\frac{1}{\left(\frac{\log_3 3}{\log_3 5}\right)}} + (3^3)^{\frac{\log_3 36}{\log_3 9}} + 3^{\frac{4}{\left(\frac{\log_3 9}{\log_3 7}\right)}}\\ =\Large3^{4 \times \frac{\log_3 5}{1}} + 3^{3 \times \frac{\log_3 36}{2}} + 3^{\frac{4 \log_3 7}{2}}\\ =\Large3^{4\log_3 5} + 3^{\frac{3}{2}\log_3 36} + 3^{2 \log_3 7}

Notice that every term in the expression is in the form of a b log a c \large a^{b \log_a c}

Now, let y = a b log a c \large y=a^{b \log_a c}

log a y = log a a b log a c log a y = b log a c log a a log a y = log a c b y = c b a b log a c = c b \large \log_a y = \log_a a^{b \log_a c}\\ \large \log_a y = b\log_a c \log_a a\\ \large \log_a y = \log_a c^b\\ \large y=c^b\\ \large a^{b \log_a c} = c^b

We can substitute this identity into the expression:

3 4 log 3 5 + 3 3 2 log 3 36 + 3 2 log 3 7 = 5 4 + 3 6 3 2 + 7 2 = 625 + 216 + 49 = 890 \Large3^{4\log_3 5} + 3^{\frac{3}{2}\log_3 36} + 3^{2 \log_3 7}\\ =\large 5^4 + 36^{\frac{3}{2}} + 7^2\\ =\large 625 + 216 + 49\\ =\large \boxed{890}

Even i did in the same way! :)

Keerthi Reddy - 5 years ago

Log in to reply

Same here!😀 Is this the only way to solve it or is there some other way too ?

Anurag Pandey - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...