#22 Hua Luo Geng.

Algebra Level 2

n = 1 100 1 + 1 n 2 + 1 ( n + 1 ) 2 = a 1 b \sum_{n=1}^{100} \sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}} = a - \frac 1b

The equation above holds true for some positive integers a a and b b . Find a + b a+b .

200 204 198 202

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marco Brezzi
Aug 20, 2017

Relevant wiki: Partial fractions , Telescoping series

S = n = 1 100 1 + 1 n 2 + 1 ( n + 1 ) 2 = n = 1 100 n 2 ( n + 1 ) 2 + ( n + 1 ) 2 + n 2 n 2 ( n + 1 ) 2 = n = 1 100 n 4 + 2 n 3 + 3 n 2 + 2 n + 1 n 2 ( n + 1 ) 2 = n = 1 100 n 4 + n 2 + 1 + 2 n 3 + 2 n 2 + 2 n n 2 ( n + 1 ) 2 = n = 1 100 ( n 2 + n + 1 ) 2 n 2 ( n + 1 ) 2 = n = 1 100 n 2 + n + 1 n ( n + 1 ) = n = 1 100 n ( n + 1 ) + 1 n ( n + 1 ) = n = 1 100 1 + 1 n ( n + 1 ) = 100 + n = 1 100 1 n 1 n + 1 c c c c c c c c i c c c c by partial fractions = 100 + 1 1 101 c c c c c c c c c c c c c c c c c c c by telescoping series sum = 101 1 101 = a 1 b \begin{aligned} S&=\sum_{n=1}^{100}\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{(n+1)^2}}\\ &=\sum_{n=1}^{100}\sqrt{\dfrac{n^2(n+1)^2+(n+1)^2+n^2}{n^2(n+1)^2}}\\ &=\sum_{n=1}^{100}\sqrt{\dfrac{n^4+2n^3+3n^2+2n+1}{n^2(n+1)^2}}\\ &=\sum_{n=1}^{100}\sqrt{\dfrac{n^4+n^2+1+2n^3+2n^2+2n}{n^2(n+1)^2}}\\ &=\sum_{n=1}^{100}\sqrt{\dfrac{(n^2+n+1)^2}{n^2(n+1)^2}}\\ &=\sum_{n=1}^{100}\dfrac{n^2+n+1}{n(n+1)}\\ &=\sum_{n=1}^{100}\dfrac{n(n+1)+1}{n(n+1)}\\ &=\sum_{n=1}^{100}\mathbin{\color{#3D99F6}1}+\mathbin{\color{#D61F06}\dfrac{1}{n(n+1)}}\\ &=\mathbin{\color{#3D99F6}100}+\sum_{n=1}^{100}\mathbin{\color{#D61F06}\dfrac{1}{n}-\dfrac{1}{n+1}}\phantom{ccccccccicccc}\color{#D61F06}\text{by partial fractions}\\ &=100+\mathbin{\color{#D61F06}1-\dfrac{1}{101}}\phantom{ccccccccccccccccccc}\color{#D61F06}\text{by telescoping series sum}\\ &=101-\dfrac{1}{101}=a-\dfrac{1}{b} \end{aligned}

a + b = 101 + 101 = 202 \Longrightarrow a+b=101+101=\boxed{202}

Yes, absolutely same!

Kelvin Hong - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...