A problem by krishna mandalika

Level pending

1+2-3+4+5-6+7+8-9..........1999+2000-2001


The answer is 666333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Omkar Kulkarni
Jan 22, 2015

This is how you do the grouping.

( 1 + 2 3 ) + ( 4 + 5 6 ) + ( 7 + 8 9 ) + . . . + ( 1999 + 2000 2001 ) (1+2-3)+(4+5-6)+(7+8-9)+...+(1999+2000-2001)

= 0 + 3 + 6 + . . . + 1998 = 0+3+6+...+1998

= 3 ( 1 + 2 + . . . + 666 ) = 3(1+2+...+666)

= 3 × n = 1 666 n = 3 \times \displaystyle \sum_{n=1}^{666} n

= 3 × ( 666 ) ( 667 ) 2 = 3 \times \frac {(666)(667)}{2}

= 3 × 333 × 667 = 666333 = 3 \times 333 \times 667 = \boxed {666333}

Nice problem! @Krishna

Azadali Jivani
Aug 14, 2015

By grouping..........
(1+2+-3)+(4+5-6)+...................+(1999+2000-2001)
=0 + 3 + 6 + ..................+1998
Sn=n(a+l)/2
n =1998/3 = 666,
Sn= 666(3+1998)/2 =666333(Ans.)



0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...