A calculus problem by KY Kong

Calculus Level 3

Write down the first four terms of ( 1 x ) 1 / 2 . (1-x)^{-1/2}.

Using x = 1 50 x = \frac{1}{50} , calculate the value of 2 \sqrt{2} ,correct to 5 significant figures


The answer is 1.4142.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 28, 2015

( 1 x ) 1 2 = 1 + 1 2 1 ( x ) + 1 2 ( 3 2 ) 1 ˙ 2 ( x ) 2 + 1 2 ( 3 2 ) ( 5 2 ) 1 ˙ 2 ˙ 3 ( x ) 3 + 1 2 ( 3 2 ) ( 5 2 ) ( 7 2 ) 1 ˙ 2 ˙ 3 ˙ 4 ( x ) 4 + . . . = 1 + x 2 + 3 x 2 8 + 5 x 3 16 + 35 x 4 128 + . . . 1 1 1 50 = 1 + 0.02 2 + 3 ˙ 0.0 2 2 8 + 5 ˙ 0.0 2 3 16 + 35 ˙ 0.0 2 4 128 + . . . 50 49 = 1 + 0.01 + 0.00015 + 0.0000025 + 0.00000004375 5 2 7 = 1.010152544 2 = 7 5 × 1.010152544 = 1.41421 \begin{aligned} (1-x)^{-\frac{1}{2}} & = \small 1 + \frac{-\frac{1}{2}}{1}(-x) + \frac{-\frac{1}{2}\left( -\frac{3}{2}\right)}{1 \dot{} 2}(-x)^2 + \frac{-\frac{1}{2}\left( -\frac{3}{2}\right)\left( -\frac{5}{2}\right)}{1 \dot{} 2 \dot{}3 }(-x)^3 \\ & \small \quad + \frac{-\frac{1}{2}\left( -\frac{3}{2}\right)\left( -\frac{5}{2}\right)\left( -\frac{7}{2}\right)}{1 \dot{} 2 \dot{}3 \dot{} 4 }(-x)^4 + ... \\ & = 1 + \frac{x}{2} + \frac{3x^2}{8} + \frac{5x^3}{16} + \frac{35x^4}{128} + ... \\ \Rightarrow \frac{1}{\sqrt{1-\frac{1}{50}}} & = 1 + \frac{0.02}{2} + \frac{3\dot{} 0.02^2}{8} + \frac{5\dot{} 0.02^3}{16} + \frac{35\dot{} 0.02^4}{128} + ... \\ \sqrt{\frac{50}{49}} & = 1 + 0.01 + 0.00015 + 0.0000025 + 0.00000004375 \\ \frac{5\sqrt{2}}{7} & = 1.010152544 \\ \Rightarrow \sqrt{2} & = \frac{7}{5} \times 1.010152544 \\ & = \boxed{1.41421} \end{aligned}

Moderator note:

Simple standard approach.

You should use \approx instead of = = in the latter lines, once you estimate with the first few terms.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...