An algebra problem by Mayur Ranaware

Algebra Level 2

If 5 x = 6 y = 3 0 7 5^x = 6^y = 30^7 , then what is the value of x y x + y \frac{ xy}{x+y} ?

1 7 \frac17 7 7 1 1 3 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Jaydee Lucero
Aug 24, 2014

Write x y x + y = 1 x + y x y = 1 1 x + 1 y \frac{xy}{x+y}=\frac{1}{\dfrac{x+y}{xy}}=\frac{1}{\dfrac{1}{x}+\dfrac{1}{y}} From 5 x = 3 0 7 5^x=30^7 , we get x = 7 log 5 30 x=7\log_5 {30} . And from 6 y = 3 0 7 6^y=30^7 , we get y = 7 log 6 30 y=7 \log_6 {30} . Thus, 1 1 x + 1 y = 1 1 7 log 5 30 + 1 7 log 6 30 = 1 1 7 log 30 5 + 1 7 log 30 6 = 1 1 7 log 30 30 = 7 . \frac{1}{\dfrac{1}{x}+\dfrac{1}{y}}=\frac{1}{\dfrac{1}{7\log_5 {30}}+\dfrac{1}{7\log_6 {30}}}=\frac{1}{\dfrac{1}{7} \log_{30} 5+\dfrac{1}{7} \log_{30} 6}=\frac{1}{\dfrac{1}{7} \log_{30} {30}}=\boxed{7}.

wow. amazing dude..

John Aries Sarza - 6 years, 9 months ago
Kartik Sharma
Aug 25, 2014

Let

5 x = 6 y = 30 7 = k {5}^{x} = {6}^{y} = {30}^{7} = k

Then, 5 x = k {5}^{x} = k => 5 = k 1 x 5 = {k}^{\frac{1}{x}}

Similarly, 6 = k 1 y 6 = {k}^{\frac{1}{y}}

Also, 5 * 6 = 30

Therefore, k 1 x {k}^{\frac{1}{x}} * k 1 y {k}^{\frac{1}{y}} = k x + y x y {k}^{\frac{x+y}{xy}} = 30

We know that k = 30 7 {30}^{7}

Hence, 30 = 30 7 ( x + y x y ) 30 = {30}^{7(\frac{x + y}{xy})}

therefore, x y x + y = 7 \frac{xy}{x+y} = 7

L N
Aug 25, 2014

We know that 5 x × 6 y = ( 3 0 7 ) 2 = 3 0 14 = ( 5 14 × 6 14 ) 5^x \times 6^y = (30^7)^2 = 30^{14} = (5^{14} \times 6^{14}) Therefore, x = y = 14 x = y = 14 Hence, we have: 14 14 14 + 14 = 7 \frac{14 \cdot 14}{14 + 14} = 7

x y 14 x \neq y \neq 14

Samuraiwarm Tsunayoshi - 6 years, 9 months ago

Log in to reply

Ahh, darn it, silly me... Then is my "correct" answer a coincidence, or is there still a way to make my method work?

L N - 6 years, 9 months ago

Log in to reply

Ehh, doesn't look like this can be used, although, it is an easy way to find out what x*y is. Sorry about the inconvenience.

L N - 6 years, 9 months ago

I did the same 😅

Boss Agarwal - 2 years, 8 months ago
Roger Erisman
Apr 28, 2015

1) 6^y = 30^7 ===> y* ln6 = 7 * ln30

2) 5^x = 30^7 ===> x* ln5 = 7* ln30

so, y * ln6 = x * ln 5 ====> y = x * ln5 / ln6

substituting

x * y = x^2 * ln5/ln6 and

x + y = x + x * ln5/6 ====> x * (1 + ln5/ln6) ===> x * (ln6 + ln5)/ln6

To find value of expression, substitute:

(x^2 ln5/ln6) / (x * (ln6 + ln5)/ln6 ====> x ln5/ln6 * ln6/(ln6 + ln5)

= x ln5 / (ln6 + ln5) = x * ln5 / ln(6 5) = x ln5 / ln30

Substitute from 2):

= 7 * ln30 / ln30 = 7

Salman Baig
Nov 19, 2014

5^x = 30^7 => 5^x = (5^7)(6^7) => 5^(x-7) = 6^7. Taking log on both sides, (x-7)log5 = 7log6 => log5/log6 = 7/(x-7) --- (i). Also, 6^y = 30^7 => 6^(y-7) = 5^7. Taking log on both sides, (y-7)log6 = 7log5 => log5/log6 = (y-7)/7 --- (ii). Comparing equation (i) & (ii), we have 7/(x-7) = (y-7)/7. Simplifying this equation and we get xy/(x+y) = 7.

Lakshya Gupta
Sep 14, 2014

30^7=(5.6)^7 =5^7.6^7 Squaring both sides we get, 5^7.6^7.5^7.6^7=5^x.5^x so, 5^7.6^7.5^7.6^7=5^x.6^y therefore, x=y=14 rest is easy

Anik Mandal
Aug 24, 2014

5 x = 6 y = 3 0 7 = 5 7 6 7 5^x=6^y=30^7=5^7\cdot 6^7

l o g 5 5 x 7 = l o g 5 6 7 log_55^{x-7}= log_5 6^7

x 7 = l o g 5 279936 x-7=log_5 279936

x = 14.794 x=14.794

similarly y = 13.288 y=13.288

Hence the required value is 6.821 i . e . 7 6.821i.e.\boxed{7}

Flawed.....

Krishna Ar - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...