A problem by milind prabhu

Level pending

If a + 1 a = 3 a+\frac { 1 }{ a } =\sqrt { 3 } then find the value of a 3 + 1 a 3 { a }^{ 3 }+\frac { 1 }{ a^{ 3 } }


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tunk-Fey Ariawan
Mar 18, 2014

Let a = e i θ a=e^{i\theta} , then a 1 = e i θ a^{-1}=e^{-i\theta} . Euler's formula states that, for any real number θ \theta and n n , e i n θ = cos n θ + i sin n θ e^{in\theta}=\cos n\theta+i\sin n\theta and e i n θ = cos n θ i sin n θ . e^{-in\theta}=\cos n\theta-i\sin n\theta. Then a + a 1 = 3 e i θ + e i θ = 3 cos θ + i sin θ + cos θ i sin θ = 3 2 cos θ = 3 θ = cos 1 ( 3 2 ) = π 6 rad = 3 0 . \begin{aligned} a+a^{-1}&=\sqrt{3}\\ e^{i\theta}+e^{-i\theta}&=\sqrt{3}\\ \cos\theta+i\sin\theta+\cos\theta-i\sin\theta&=\sqrt{3}\\ 2\cos\theta&=\sqrt{3}\\ \theta&=\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)\\ &=\frac{\pi}{6}\text{rad}\\ &=30^\circ. \end{aligned} Therefore, for n = 3 n=3 , we obtain a 3 + a 3 = e 3 i θ + e 3 i θ a 3 + 1 a 3 = 2 cos ( 3 θ ) = 2 cos ( 3 3 0 ) = 2 cos ( 9 0 ) = 2 0 = 0 \begin{aligned} a^3+a^{-3}&=e^{3i\theta}+e^{-3i\theta}\\ a^3+\frac{1}{a^3}&=2\cos(3\theta)\\ &=2\cos(3\cdot30^\circ)\\ &=2\cos(90^\circ)\\ &=2\cdot 0\\ &=\boxed{0} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...