Don't go back Simon!

Find the number of pairs of positive integers ( x , y ) (x,y) satisfying 1 x + 1 y = 1 2013 \dfrac1x + \dfrac1y = \dfrac1{2013} .

27 36 29 42

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 26, 2017

1 x + 1 y = 1 2013 x + y x y = 1 2013 x y 2013 ( x + y ) = 0 x y 2013 ( x + y ) + 201 3 2 = 201 3 2 ( x 2013 ) ( y 2013 ) = 201 3 2 = 3 2 1 1 2 6 1 2 \begin{aligned} \frac 1x + \frac 1y & = \frac 1{2013} \\ \frac {x+y}{xy} & = \frac 1{2013} \\ xy - 2013(x+y) & = 0 \\ xy - 2013(x+y) + 2013^2 & = 2013^2 \\ (x-2013)(y-2013) & = 2013^2 \\ & = 3^211^261^2 \end{aligned}

The number of integer solutions of ( x , y ) (x,y) , N = ( 2 + 1 ) 3 = 27 N = (2+1)^3 = \boxed{27}

SAME SOLUTION GREAT!!!!!!

mohan nayak - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...