Precise Carving

Geometry Level 4

tan 1 ( 3 4 ) 2 tan 1 ( 1 5 ) = cos 1 ( c d ) \large \tan ^{-1} \left( \dfrac 34 \right) -2 \tan ^{-1} \left( \dfrac 15 \right) = \cos ^{-1} \left(\dfrac cd \right)

The equation above holds true for coprime positive integers c c and d d . Find c + d c+d .


The answer is 128.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 19, 2016

Let α = tan 1 ( 3 4 ) \alpha = \tan^{-1} \left( \frac 34 \right) , β = tan 1 ( 1 5 ) \beta = \tan^{-1} \left( \frac 15 \right) and γ = cos 1 ( c d ) \gamma = \cos^{-1} \left( \frac cd \right) . Therefore, we have:

α 2 β = γ tan γ = tan ( α 2 β ) = tan α tan 2 β 1 + tan α tan 2 β = 3 4 2 5 1 1 25 1 + 3 4 2 5 1 1 25 = 3 4 5 12 1 + 3 4 5 12 = 16 63 \begin{aligned} \alpha - 2 \beta & = \gamma \\ \implies \tan \gamma & = \tan (\alpha - 2 \beta) \\ & = \frac {\tan \alpha - \tan 2\beta}{1 + \tan \alpha \tan 2\beta} \\ & = \frac {\frac 34 - \frac {\frac 25}{1-\frac 1{25}}}{1 + \frac 34 \cdot \frac {\frac 25}{1-\frac 1{25}}} \\ & = \frac {\frac 34 - \frac 5{12}}{1 + \frac 34 \cdot \frac 5{12}} \\ & = \frac {16}{63} \end{aligned}

Now, we have:

c d = cos γ = 1 sec γ = 1 sec 2 γ = 1 1 + tan 2 γ = 1 1 + ( 16 63 ) 2 = 63 65 \begin{aligned} \frac cd & = \cos \gamma = \frac 1{\sec \gamma} = \frac 1{\sqrt{\sec^2 \gamma}} = \frac 1{\sqrt{1+\tan^2 \gamma}} = \frac 1{\sqrt{1+ \left(\frac {16}{63} \right)^2}} = \frac {63}{65} \end{aligned}

c + d = 63 + 65 = 128 \implies c + d = 63+65 = \boxed{128}

Chung Kevin
Aug 8, 2016

Instead of applying the sum/difference formula, it is often easier to manipulate the complex number interpretation. This approach can be easily generalized.

First, observe that:

4 + 3 i ( 5 + i ) 2 = 4 + 3 i 24 + 10 i = ( 4 + 3 i ) ( 24 10 i ) ( 24 10 i ) ( 24 + 10 i ) = 126 + 32 i 2 4 2 + 1 0 2 = 63 338 + 8 169 i \dfrac{4 + 3i}{(5 +i)^2} = \dfrac{4+3i}{24+10i} = \dfrac{(4+3i)(24-10i)}{(24-10i)(24+10i)} = \dfrac{126 + 32i}{24^2 + 10^2} = \dfrac{63}{338} + \dfrac8{169} i

If we take the polar representation of this number, we get that:

4 2 + 3 2 C I S ( tan 1 3 4 ) [ 1 2 + 5 2 C I S ( tan 1 1 5 ) ] 2 = ( 63 338 ) 2 + ( 8 169 ) 2 C I S ( cos 1 63 338 ( 63 338 ) 2 + ( 8 169 ) 2 ) \frac{ \sqrt{4^2 + 3^2 } CIS ( \tan^{-1} \frac{3}{4} ) } { \left[ \sqrt{ 1^2 + 5^2 } CIS ( \tan^{-1} \frac {1}{5} ) \right]^2 } = \sqrt{ ( \frac{ 63}{338} ) ^2 + ( \frac{8}{169} ) ^2 } CIS \left( \cos ^{-1} \frac{ \frac{ 63}{338} } { \sqrt{ ( \frac{ 63}{338} ) ^2 + ( \frac{8}{169} ) ^2 } } \right)

Now, simplifying the calculations and considering the angle measure, we get that:

tan 1 3 4 2 × tan 1 1 5 = cos 1 63 65 \tan^{-1} \frac{3}{4} - 2 \times \tan^{-1} \frac {1}{5} = \cos^{-1} \frac{63}{65}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...