An algebra problem by Naman Choudhary

Algebra Level 3

9 + 4 5 3 + 9 4 5 3 = ? \large \sqrt [ 3 ]{ 9+4\sqrt { 5 } } +\sqrt [ 3 ]{ 9-4\sqrt { 5 } } = \ ?

Give your answer to 3 decimal places.


The answer is 3.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ikkyu San
Aug 16, 2015

Let A = 9 + 4 5 3 \color{#D61F06}{A=\sqrt[3]{9+4\sqrt5}} , B = 9 4 5 3 \color{#3D99F6}{B=\sqrt[3]{9-4\sqrt5}} and S = A + B = 9 + 4 5 3 + 9 4 5 3 \color{#20A900}S=\color{#D61F06}A+\color{#3D99F6}B=\color{#D61F06}{\sqrt[3]{9+4\sqrt5}}+\color{#3D99F6}{\sqrt[3]{9-4\sqrt5}}

Now,

S 3 = ( A + B ) 3 = A 3 + 3 A 2 B + 3 A B 2 + B 3 = A 3 + B 3 + 3 A B ( A + B ) = A 3 + B 3 + 3 A B S ( ) \begin{aligned}\color{#20A900}S^3=&\ (A+B)^3\\=&\ A^3+3A^2B+3AB^2+B^3\\=&\ A^3+B^3+3AB(\color{#D61F06}A+\color{#3D99F6}B)\\=&\ \color{#302B94}{A^3+B^3}+\color{magenta}{3AB}\color{#20A900}S\Rightarrow(*)\end{aligned}

Thus,

A 3 + B 3 = ( 9 + 4 5 3 ) 3 + ( 9 4 5 3 ) 3 = 9 + 4 5 + 9 4 5 = 18 \begin{aligned}\color{#302B94}{A^3+B^3}=&\ \left(\color{#D61F06}{\sqrt[3]{9+4\sqrt5}}\right)^3+\left(\color{#3D99F6}{\sqrt[3]{9-4\sqrt5}}\right)^3\\=&\ 9+4\sqrt5+9-4\sqrt5\\=&\ \color{#302B94}{18}\end{aligned}

3 A B = 3 ( 9 + 4 5 3 ) ( 9 4 5 3 ) = 3 ( 9 + 4 5 ) ( 9 4 5 ) 3 = 3 81 80 3 = 3 1 3 = 3 \begin{aligned}\color{magenta}{3AB}=&\ 3\left(\color{#D61F06}{\sqrt[3]{9+4\sqrt5}}\right)\left(\color{#3D99F6}{\sqrt[3]{9-4\sqrt5}}\right)\\=&\ 3\sqrt[3]{(9+4\sqrt5)(9-4\sqrt5)}\\=&\ 3\sqrt[3]{81-80}\\=&\ 3\sqrt[3]1\\=&\ \color{magenta}3\end{aligned}

Instead A 3 + B 3 \color{#302B94}{A^3+B^3} with 18 \color{#302B94}{18} and 3 A B \color{magenta}{3AB} with 3 \color{magenta}3 in equation ( ) (*)

S 3 = 18 + 3 S S 3 3 S 18 = 0 ( S 3 ) ( S 2 + 3 S + 6 ) = 0 S = 3 \begin{aligned}\color{#20A900}S^3=&\ \color{#302B94}{18}+\color{magenta}3\color{#20A900}S\\\color{#20A900}S^3-3\color{#20A900}S-18=&\ 0\\(\color{#20A900}S-3)(\color{#20A900}S^2+3\color{#20A900}S+6)=&\ 0\\\color{#20A900}{S=}&\ \color{#20A900}3\end{aligned}

From equation

S 2 + 3 S + 6 = 0 Δ = 3 2 4 ( 1 ) ( 6 ) = 15 \begin{aligned}\color{#20A900}S^2+3\color{#20A900}S+6=&\ 0\\\Delta=&\ 3^2-4(1)(6)=&-15\end{aligned}

Δ < 0 \Delta<0 . Thus, this equation has no real solution.

Hence, 9 + 4 5 3 + 9 4 5 3 = 3 \sqrt[3]{9+4\sqrt5}+\sqrt[3]{9-4\sqrt5}=\boxed3

Moderator note:

Thanks for the edit. Wonderful and neat as always. Keep up the good work!

By the way, a better to explain it by showing that S S is a real number so its discriminant is non-negative.

Nice solution sir!

Rohit Udaiwal - 5 years, 9 months ago
Bob Jones
Aug 15, 2015

set it equal to z, cube the whole thing Some Fundemental polynomials that we need to know 1. (a+b)^3 = a^3 +3a^2 b + 3a b^2 + 3b^3 2. (a+b)(a-b) = a^2 -b^2 If we substitute a for cuberoot(9+4sqrt(5)) and b for cuberoot(9-4 sqrt(5)), z^3 expanded, we get (9+4sqrt(5)) + 3 cuberoot(9+4sqrt(5))^2 * cuberoot(9-4sqrt(5)) + 3*cuberoot(9-4sqrt(5))^2 * cuberoot(9+4sqrt(5)) + (9-4sqrt(5)

now we use the second expansion formula (9+4sqrt(5)) (9-4sqrt(5)) = 81-81 =1 so z^3 = (9+4sqrt(5)) + 3 1 cuberoot(9+4sqrt(5)) + 3 1*cuberoot(9-4sqrt(5)) + 9-4sqrt(5) if we simplify, we get z^3 = 18 + 3cuberoot(9+4sqrt(5)) + 3(9-4sqrt(5))

now we divide everything by 3, z^3 / 3 = 6+cuberoot(9+4sqrt(5)) + (9-4sqrt(5)) that second part, cuberoot(9+4sqrt(5)) + (9-4sqrt(5)), is what we set to z so the difference between z^3 / 3 and z = 6 z^3 /3 - z = 6 (z^3 - 3z)/3 = 6 z^3 -3z-18 = 0 Now we use the rational root theorem, the possible roots are plus minus 1, 3, 9, 18 we plug in and we get positive 3 as the answer... P.S. Sorry, I don't know latex yet, so I put my solution in a picture

Bala Vidyadharan
Aug 19, 2015

Let 9 + 4 5 3 + 9 4 5 2 3 x = 0 c o n s i d e r a = 9 + 4 5 3 , b = 9 4 5 3 , c = ( x ) I f a + b + c = 0 t h e n a 3 + b 3 + c 3 = 3 a b c 9 + 4 5 3 3 + 9 4 5 3 3 + ( x ) 3 = 3 ( 9 + 4 5 . 9 4 5 ) 3 . ( x ) 9 + 4 5 + 9 4 5 x 3 = 3 81 80 3 ( x ) 18 x 3 = 3.1. ( x ) 18 x 3 = 3 x x 3 3 x 18 = 0 B y f a c t o r i z i n g w e g e t , ( x 3 ) ( x 2 + 3 x + 6 ) = 0 x 3 = 0 x 2 + 3 x + 6 = 0 , Δ < 0 x = 3 T h e r o o t s a r e c o m p l e x . B u t t h e s u m o f t w o i r r a t i o n a l s c a n n o t b e c o m p l e x 9 + 4 5 3 + 9 4 5 3 = x = 3 \sqrt [ 3 ]{ 9+4\sqrt { 5 } } +\quad \sqrt [ 3 ]{ 9-4\sqrt [ 2 ]{ 5 } } -x\quad =0\\ \\ consider\\ \quad \\ a=\sqrt [ 3 ]{ 9+4\sqrt { 5 } } ,b=\sqrt [ 3 ]{ 9-4\sqrt { 5 } } ,c=(-x)\\ \\ If\quad a+b+c=0\quad then\quad { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 }=3abc\\ \\ { \sqrt [ 3 ]{ 9+4\sqrt { 5 } } }^{ 3 }+{ \sqrt [ 3 ]{ 9-4\sqrt { 5 } } }^{ 3 }+{ (-x) }^{ 3 }=3(\sqrt [ 3 ]{ 9+4\sqrt { 5\quad .9-4\sqrt { 5\quad ) } } } .(-x)\\ \\ 9+4\sqrt { 5 } +9-4\sqrt { 5 } { -x }^{ 3 }\quad =\quad 3\sqrt [ 3 ]{ 81-80 } (-x)\\ \\ 18{ -x }^{ 3 }=\quad 3.1.(-x)\\ \\ 18-{ x }^{ 3 }=-3x\\ \\ { x }^{ 3 }-3x-18=0\\ \\ By\quad factorizing\quad we\quad get,\\ \\ (x-3)({ x }^{ 2 }+3x+6)=0\quad \\ \\ x-3=0\quad \quad { x }^{ 2 }+3x+6=0\quad ,\Delta <0\quad \\ \\ x=3\quad \quad \quad \quad The\quad roots\quad are\quad complex.\\ \\ But\quad the\quad sum\quad of\quad two\quad irrationals\quad cannot\quad be\quad complex\\ \\ \therefore \quad \sqrt [ 3 ]{ 9+4\sqrt { 5 } } +\sqrt [ 3 ]{ 9-4\sqrt { 5 } } =x=3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...