A problem by narendiran veerabhagu

Level pending

What is value of 1+2^3+3^3+...................................99^3+100^3?


The answer is 25502500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mathh Mathh
May 14, 2015

Use 1 3 + 2 3 + + n 3 = ( n ( n + 1 ) 2 ) 2 1^3+2^3+\cdots + n^3=\left(\frac{n(n+1)}{2}\right)^2 .

( 100 ( 101 ) 2 ) 2 = 505 0 2 = 25502500 \left(\frac{100(101)}{2}\right)^2=5050^2=\boxed{25502500} .

Some other formulas: 1 + 2 + + n = n ( n + 1 ) 2 1+2+\cdots+n=\frac{n(n+1)}{2} .

1 2 + 2 2 + + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6} .

1 4 + 2 4 + + n 4 = n ( n + 1 ) ( 2 n + 1 ) ( 3 n 2 + 3 n 1 ) 30 1^4+2^4+\cdots+n^4=\frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...