A truth table needed?

Logic Level 3

a b c ( ¬ [ ( ¬ a ¬ b ) ( ¬ a c ) ( b c ) ] ( ¬ a c ) ) \large \forall a \forall b \forall c \left( \neg{\left[ (\neg{a} \land \neg{b}) \lor (\neg{a}\land c) \lor (b \land c) \right]} \lor (\neg{a} \lor c) \right)

Is the above proposition true?

False True It depends Not enough information

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We know that a ( b ( c ( ( ( a b ) ( b c ) ) ( a c ) ) ) ) \forall a \left( \forall b \left( \forall c \left(\left( \left(a \rightarrow b \right)\land \left(b \rightarrow c\right) \right) \rightarrow \left(a\rightarrow c \right) \right) \right) \right) . But we have that a ( b ( c ( ( ( a b ) ( b c ) ) ( a c ) ) ) ) \forall a \left( \forall b \left( \forall c \left(\left( \left(a \rightarrow b \right)\land \left(b \rightarrow c\right) \right) \rightarrow \left(a\rightarrow c \right) \right) \right) \right)\iff a ( b ( c ( ( ( ¬ a b ) ( ¬ b c ) ) ( ¬ a c ) ) ) ) \forall a \left( \forall b \left( \forall c \left(\left( \left(\neg{a} \lor b \right)\land \left(\neg{b} \lor c \right) \right) \rightarrow \left(\neg{a} \lor c \right) \right) \right) \right) \iff a ( b ( c ( ¬ ( ( ¬ a b ) ( ¬ b c ) ) ( ¬ a c ) ) ) ) \forall a \left( \forall b \left( \forall c \left(\neg{\left( \left(\neg{a} \lor b \right)\land \left(\neg{b} \lor c \right) \right)} \lor \left(\neg{a} \lor c \right) \right) \right) \right) \iff a ( b ( c ( ¬ ( ( ¬ a ¬ b ) ( ¬ a c ) ( b ¬ b ) ( b c ) ) ( ¬ a c ) ) ) ) \forall a \left( \forall b \left( \forall c \left(\neg{\left( \left(\neg{a} \land \neg{b} \right)\lor \left(\neg{a} \land c \right) \lor \left(b \land \neg{b} \right) \lor \left(b \land c \right)\right)} \lor \left(\neg{a} \lor c \right) \right) \right) \right) \iff a ( b ( c ( ¬ ( ( ¬ a ¬ b ) ( ¬ a c ) ( b c ) ) ( ¬ a c ) ) ) ) \forall a \left( \forall b \left( \forall c \left(\neg{\left( \left(\neg{a} \land \neg{b} \right)\lor \left(\neg{a} \land c \right) \lor \left(b \land c \right)\right)} \lor \left(\neg{a} \lor c \right) \right) \right) \right)

As wanted.

By Boolean algebra, I get a + b + c + 1 a+b+c+1 . I forgot that a + 1 = 1 a+1 = 1 :(

Jake Lai - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...