Super Powers

Calculus Level pending

Let ( a n ) n N {\left( a_n\right)}_{n \in \mathbb{N} } be a sequence defined, recursively, by:

{ a 1 = x n N \ { 1 } , a n + 1 = x a n \begin{cases} a_1=x \\ \forall n\in \mathbb{N}\backslash\{1\} , & a_{n+1}=x^{a_n}\\ \end{cases}

For some x R + x \in \mathbb{R}^{+} .

Let x R + x\in \mathbb{R}^{+} be such that lim a n = 2 \lim a_n=2

(these means, intuitively, that x x x x x . . . = 2 x^{x^{x^{x^{x^{ ... }}}}} =2 ).

Find the value of x 6 + x 4 + x 2 + 1 \lfloor x^6+x^4+x^2+1 \rfloor .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let ( a n ) n N {\left( a_n \right)}_{n \in \mathbb{N} } be such that

{ a 1 = x n N , a n + 1 = x a n \begin{cases} a_1=x \\ \forall n \in \mathbb{N}, & a_{n+1}=x^{a_n} \\ \end{cases}

For some x R + x \in \mathbb{R}^{+} such that

lim a n = 2 \lim a_n=2 .

We have that

log x ( 2 ) = 2 2 = x 2 x = 2 \log_x \left(2 \right)=2 \implies 2=x^2 \implies x=\sqrt2 .

This means that

x 6 + x 4 + x 2 + 1 = ( 2 ) 6 + ( 2 ) 4 + ( 2 ) 2 + 1 = 15 \lfloor x^6+x^4+x^2+1 \rfloor= \lfloor {\left(\sqrt2 \right)}^6+{\left(\sqrt2 \right)}^4+{\left(\sqrt2 \right)}^2+1 \rfloor=\lfloor 15 \rfloor .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...