An algebra problem by Phudish Prateepamornkul

Algebra Level 3

3 x 3 + 5 x 5 + 17 x 17 + 19 x 19 = x 2 11 x 4 \frac{3}{x-3}+\frac{5}{x-5}+\frac{17}{x-17}+\frac{19}{x-19} = x^2-11x-4

The largest real solution to the equation above is of the form a + b + c a + \sqrt{b+\sqrt{c}} , where a a , b b and c c are positive integers. Find a + b + c a+b+c .


The answer is 263.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 20, 2017

3 x 3 + 5 x 5 + 17 x 17 + 19 x 19 = x 2 11 x 4 x ( x 3 ) x 3 + x ( x 5 ) x 5 + x ( x 17 ) x 17 + x ( x 19 ) x 19 = x 2 11 x 4 x x 3 + x x 5 + x x 17 + x x 19 4 = x 2 11 x 4 x ( 1 x 3 + 1 x 5 + 1 x 17 + 1 x 19 ) = x ( x 11 ) x = 0 is a root. 1 x 3 + 1 x 5 + 1 x 17 + 1 x 19 = x 11 Let y = x 11 1 y + 8 + 1 y + 6 + 1 y 6 + 1 y 8 = y 2 y y 2 64 + 2 y y 2 36 = y y = 0 x = 11 is a root. 4 y 2 200 ( y 2 64 ) ( y 2 36 ) = 1 4 y 2 200 = y 4 100 y 2 + 2304 y 4 104 y 2 + 2504 = 0 y 2 = 52 ± 200 y = ± 52 ± 200 x = 11 ± 52 ± 200 4 more roots. \begin{aligned} \frac 3{x-3} + \frac 5{x-5} + \frac {17}{x-17} + \frac {19}{x-19} & = x^2 - 11x - 4 \\ \frac {x-(x-3)}{x-3} + \frac {x-(x-5)}{x-5} + \frac {x-(x-17)}{x-17} + \frac {x-(x-19)}{x-19} & = x^2 - 11x - 4 \\ \frac x{x-3} + \frac x{x-5} + \frac x{x-17} + \frac x{x-19} - 4 & = x^2 - 11x - 4 \\ {\color{#D61F06}x}\left(\frac 1{x-3} + \frac 1{x-5} + \frac 1{x-17} + \frac 1{x-19}\right) & = {\color{#D61F06}x}(x - 11) & \small \color{#D61F06} \implies x = 0 \text{ is a root.} \\ \frac 1{x-3} + \frac 1{x-5} + \frac 1{x-17} + \frac 1{x-19} & = x - 11 & \small \color{#3D99F6} \text{Let }y = x-11 \\ {\color{#3D99F6}\frac 1{y+8}} + \frac 1{y+6} + \frac 1{y-6} + {\color{#3D99F6}\frac 1{y-8}} & = y \\ {\color{#3D99F6}\frac {2{\color{#D61F06}y}}{y^2-64}} + \frac {2{\color{#D61F06}y}}{y^2-36} & = \color{#D61F06}y & \small \color{#D61F06} \implies y = 0 \implies x = 11 \text{ is a root.} \\ \frac {4y^2 - 200}{(y^2-64)(y^2-36)} & = 1 \\ 4y^2 - 200 & = y^4 - 100y^2 + 2304 \\ y^4 - 104y^2 + 2504 & = 0 \\ \implies y^2 & = 52 \pm \sqrt {200} \\ y & = \pm \sqrt{52 \pm \sqrt {200}} \\ \implies x & = 11 \pm \sqrt{52 \pm \sqrt {200}} & \small \color{#D61F06} \text{4 more roots.} \end{aligned}

The largest real root is x = 11 + 52 + 200 x=11+\sqrt{52 + \sqrt {200}} , a + b + c = 11 + 52 + 200 = 263 \implies a+b+c = 11+52+200 = \boxed{263} .

@Phudish Prateepamornkul , I have changed a simpler solution.

Chew-Seong Cheong - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...