A problem by rana kar

Level 2

If: ab + bc + ca = 0 Then the value of: 1 a 2 b c \frac{1}{a^{2} - bc} + 1 b 2 c a \frac{1}{b^{2} - ca} + 1 c 2 a b \frac{1}{c^{2} - ab} = ??

abc a + b + c 1 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jaydee Lucero
Feb 12, 2014

a b + b c + c a = 0 ab+bc+ca=0 implies a b = b c + c a -ab=bc+ca , b c = a b + c a -bc=ab+ca and c a = a b + b c -ca=ab+bc . So the expression above 1 a 2 b c + 1 b 2 c a + 1 c 2 a b \frac{1}{a^2-bc}+\frac{1}{b^2-ca}+\frac{1}{c^2-ab} becomes 1 a 2 + ( a b + c a ) + 1 b 2 + ( a b + b c ) + 1 c 2 + ( b c + c a ) . \frac{1}{a^2+(ab+ca)}+\frac{1}{b^2+(ab+bc)}+\frac{1}{c^2+(bc+ca)}. Notice that the common factor of the three terms is 1 a + b + c \frac{1}{a+b+c} . So, factoring this out and then combining terms gives ( 1 a + 1 b + 1 c ) 1 a + b + c = a b + a c + b c a b c 1 a + b + c . \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\frac{1}{a+b+c}=\frac{ab+ac+bc}{abc} \cdot \frac{1}{a+b+c}. Since a b + a c + b c = 0 ab+ac+bc=0 , the entire expression zeroes out. Thus, the answer is 0 \boxed{0} .

👍

rana kar - 7 years, 3 months ago
Shamik Banerjee
Feb 11, 2014

Given: ab + bc + ca = 0

Putting -bc = ab + ca, -ca = ab + bc, and -ab = bc + ca, we get the following:

a^2 - bc = a^2 + ab + ca = a(a + b + c)

b^2 - ca = b^2 + ab + bc = b(a + b + c)

c^2 - ab = c^2 + bc + ca = c(a + b + c)

Therefore, the given expression simplifies into:

1/{a(a + b + c)} + 1/{b(a + b + c)} + 1/{c(a + b + c)}

= (bc + ca + ab)/{abc(a + b + c}

= 0/{abc(a + b + c}

= 0

Is there answer 2 too ?

Please check my answer and guide me,is answer is 2 or not ?

Given: ab + bc + ca = 0

Putting -bc = ab + ca, -ca = ab + bc, and -ab = bc + ca, we get the following:

a^2 - bc = a^2 + ab + ca

b^2 - ca = b^2 + ab + bc

c^2 - ab = c^2 + bc + ca

Therefore, the given expression simplifies into:

1/{a^2+ca+bc}+1/{b^2+bc+ab}+1/{c^2+ca+bc}

{b^2+c^2+bc+a^2+c^2+ca+a^2+b^2+ab}/{a^2+b^2+c^2+ab+bc+ca}

{2a^2+2b^2+2c^2}/{a^2+b^2+c^2}

2{a^2+b^2+c^2}/{a^2+b^2+c^2}

2

Mayank Devnani - 7 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...