An algebra problem by Rishi Sharma

Algebra Level pending

If x 7 = y 11 = z 13 = 2 x 3 y + z m \frac{x}{7}=\frac{y}{11}=\frac{z}{13}=\frac{2x-3y+z}{m} then find the value of m m


The answer is -6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

It is given that:

x 7 = y 11 = z 13 = 2 x 3 y + z m \frac {x}{7} = \frac {y}{11} = \frac {z}{13} = \frac {2x-3y+z} {m}

y = 11 7 x z = 13 7 x \Rightarrow y = \dfrac {11}{7} x \quad \quad z = \dfrac {13}{7} x

2 x 3 y + z m = 2 x 3 ( 11 7 ) x + 13 7 x m = ( 14 33 + 13 ) x 7 m = 6 x 7 m \Rightarrow \dfrac {2x-3y+z} {m} = \dfrac {2x-3 (\frac {11}{7}) x+\frac {13}{7} x } {m} = \dfrac {(14-33+13)x}{7m} = \dfrac {-6x}{7m}

Since 2 x 3 y + z m = x 7 = 6 x 7 m m = 6 \space \dfrac {2x-3y+z} {m} = \dfrac {x}{7} = \dfrac {-6x}{7m} \quad \Rightarrow m = \boxed {-6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...