It's not Pythagoras

Geometry Level 4

Let a a , b b , and c c be the three sides of a triangle, and let α \alpha , β \beta , and γ \gamma be the angles opposite them respectively. If a 2 + b 2 = 1989 c 2 a^2+b^2=1989c^2 , find

tan α tan β tan α tan γ + tan β tan γ \large \frac{\color{#3D99F6}{\tan \alpha \ \tan \beta}}{\color{magenta}{\tan \alpha \ \tan \gamma}+\color{#69047E}{\tan \beta \ \tan \gamma}}


The answer is 994.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Sine Rule (Law of Sines)

By cosine rule , we have:

c 2 = a 2 + b 2 2 a b cos γ Given that a 2 + b 2 = 1989 c 2 c 2 = 1989 c 2 2 a b cos γ 2 a b cos γ = 1988 c 2 a b cos γ = 994 c 2 Sine rule: a sin α = b sin β = c sin γ = k k 2 sin α sin β cos γ = 994 k 2 sin 2 γ Dividing both sides by k 2 cos γ sin α sin β = 994 sin γ tan γ As sin γ = sin ( π α β ) = sin ( α + β ) sin α sin β = 994 sin ( α + β ) tan γ sin α sin β = 994 ( sin α cos β + sin β cos β ) tan γ Dividing both sides by cos α cos β tan α tan β = 994 ( tan α + tan β ) tan γ \begin{aligned} c^2 & = {\color{#3D99F6}a^2 + b^2} - 2ab \cos \gamma & \small \color{#3D99F6} \text{Given that } a^2 + b^2 = 1989c^2 \\ c^2 & = 1989c^2 - 2ab \cos \gamma \\ 2ab \cos \gamma & = 1988c^2 \\ ab \cos \gamma & = 994c^2 & \small \color{#3D99F6} \text{Sine rule: } \frac a {\sin \alpha} = \frac b{\sin \beta} = \frac c{\sin \gamma} = k \\ k^2 \sin \alpha \sin \beta \cos \gamma & = 994k^2 \sin^2 \gamma & \small \color{#3D99F6} \text{Dividing both sides by }k^2 \cos \gamma \\ \sin \alpha \sin \beta & = 994 {\color{#3D99F6}\sin \gamma} \tan \gamma & \small \color{#3D99F6} \text{As }\sin \gamma = \sin (\pi - \alpha - \beta) = \sin (\alpha + \beta) \\ \sin \alpha \sin \beta & = 994 {\color{#3D99F6}\sin (\alpha + \beta)} \tan \gamma \\ \sin \alpha \sin \beta & = 994 (\sin \alpha \cos \beta + \sin \beta \cos \beta) \tan \gamma & \small \color{#3D99F6} \text{Dividing both sides by }\cos \alpha \cos \beta \\ \tan \alpha \tan \beta & = 994 (\tan \alpha + \tan \beta) \tan \gamma \end{aligned}

tan α tan β tan α tan γ + tan β tan γ = 994 \begin{aligned} \implies \frac {\tan \alpha \tan \beta}{\tan \alpha \tan \gamma + \tan \beta \tan \gamma} & = \boxed{994} \end{aligned}

Nivedit Jain
Mar 1, 2017

\frac{a}{sina})=2R \(\frac{abc}{4R}=Area of triangle so from 1st and 2nd we get SinA=\(\frac{2 times Area)}{bc} similary for all angles can be calculated using sine rule now we now cosine rule so cosA can be calculated fromthere So tanA 4 t i m e s A R e a t w i c e b c \frac{4 times ARea}{twice bc} similarly all tans put all the values and we get above expssion is (a a + b b - c c)/(c c)=994 from given equation

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...