Let , , and be the three sides of a triangle, and let , , and be the angles opposite them respectively. If , find
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Sine Rule (Law of Sines)
By cosine rule , we have:
c 2 c 2 2 a b cos γ a b cos γ k 2 sin α sin β cos γ sin α sin β sin α sin β sin α sin β tan α tan β = a 2 + b 2 − 2 a b cos γ = 1 9 8 9 c 2 − 2 a b cos γ = 1 9 8 8 c 2 = 9 9 4 c 2 = 9 9 4 k 2 sin 2 γ = 9 9 4 sin γ tan γ = 9 9 4 sin ( α + β ) tan γ = 9 9 4 ( sin α cos β + sin β cos β ) tan γ = 9 9 4 ( tan α + tan β ) tan γ Given that a 2 + b 2 = 1 9 8 9 c 2 Sine rule: sin α a = sin β b = sin γ c = k Dividing both sides by k 2 cos γ As sin γ = sin ( π − α − β ) = sin ( α + β ) Dividing both sides by cos α cos β
⟹ tan α tan γ + tan β tan γ tan α tan β = 9 9 4