Sin/Cos=Tan

Geometry Level 3

{ tan a i ( 4 5 i ) = tan ( 4 4 i ) tan b i ( 4 5 + i ) = tan ( 4 6 + i ) \large \begin{cases} \tan^{a_{i}} (45^\circ - i^\circ) = \tan (44^\circ - i^\circ) \\ \tan^{b_{i}} (45^\circ + i^\circ) = \tan (46^\circ + i^\circ) \end{cases}

Given the above, where i = 1 , 2 , . . . , 43 i=1,2,...,43 , find i = 1 43 a i b i \prod_{i=1}^{43} \dfrac{a_{i}}{b_{i}} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

From

tan a i ( 4 5 i ) = tan ( 4 4 i ) a i log ( tan ( 4 5 i ) ) = log ( tan ( 4 4 i ) ) a i = log ( tan ( 4 4 i ) ) log ( tan ( 4 5 i ) ) = log ( tan ( 4 5 ( i + 1 ) ) ) log ( tan ( 4 5 i ) ) = log ( 1 tan ( i + 1 ) 1 + tan ( i + 1 ) ) log ( 1 tan i 1 + tan i ) = log ( 1 tan ( i + 1 ) ) log ( 1 + tan ( i + 1 ) ) log ( 1 tan i ) log ( 1 + tan i ) \begin{aligned} \tan^{a_i} (45^\circ - i^\circ) & = \tan (44^\circ - i^\circ) \\ a_i \log \left(\tan (45^\circ - i^\circ) \right) & = \log \left(\tan (44^\circ - i^\circ) \right) \\ \implies a_i & = \frac {\log \left(\tan (44^\circ - i^\circ) \right)}{\log \left(\tan (45^\circ - i^\circ) \right)} \\ & = \frac {\log \left(\tan (45^\circ - (i+1)^\circ) \right)}{\log \left(\tan (45^\circ - i^\circ) \right)} \\ & = \frac {\log \left(\frac {1-\tan(i+1)^\circ}{1+\tan(i+1)^\circ} \right)}{\log \left(\frac {1-\tan i^\circ}{1+\tan i^\circ} \right)} \\ & = \frac {\log \left(1-\tan(i+1)^\circ \right) - \log \left(1+\tan(i+1)^\circ \right)}{\log \left(1-\tan i^\circ \right) - \log \left(1+\tan i^\circ \right)} \end{aligned}

Similarly,

b i = log ( tan ( 4 6 + i ) ) log ( tan ( 4 5 + i ) ) = log ( tan ( 4 5 + ( i + 1 ) ) ) log ( tan ( 4 5 + i ) ) = log ( 1 + tan ( i + 1 ) 1 tan ( i + 1 ) ) log ( 1 + tan i 1 tan i ) = log ( 1 + tan ( i + 1 ) ) log ( 1 tan ( i + 1 ) ) log ( 1 + tan i ) log ( 1 tan i ) \begin{aligned} \implies b_i & = \frac {\log \left(\tan (46^\circ + i^\circ) \right)}{\log \left(\tan (45^\circ + i^\circ) \right)} \\ & = \frac {\log \left(\tan (45^\circ + (i+1)^\circ) \right)}{\log \left(\tan (45^\circ + i^\circ) \right)} \\ & = \frac {\log \left(\frac {1+\tan(i+1)^\circ}{1-\tan(i+1)^\circ} \right)}{\log \left(\frac {1+\tan i^\circ}{1-\tan i^\circ} \right)} \\ & = \frac {\log \left(1+\tan(i+1)^\circ \right) - \log \left(1-\tan(i+1)^\circ \right)}{\log \left(1+\tan i^\circ \right) - \log \left(1-\tan i^\circ \right)} \end{aligned}

We note that

log ( 1 tan ( i + 1 ) ) log ( 1 + tan ( i + 1 ) ) log ( 1 tan i ) log ( 1 + tan i ) = log ( 1 + tan ( i + 1 ) ) log ( 1 tan ( i + 1 ) ) log ( 1 + tan i ) log ( 1 tan i ) a i = b i a i b i = 1 Note that a i = b i > 0 a 1 a 2 a 3 . . . a 43 b 1 b 2 b 3 . . . b 43 = 1 \begin{aligned} \frac {\log \left(1-\tan(i+1)^\circ \right) - \log \left(1+\tan(i+1)^\circ \right)}{\log \left(1-\tan i^\circ \right) - \log \left(1+\tan i^\circ \right)} & = \frac {\log \left(1+\tan(i+1)^\circ \right) - \log \left(1-\tan(i+1)^\circ \right)}{\log \left(1+\tan i^\circ \right) - \log \left(1-\tan i^\circ \right)} \\ \implies a_i & = b_i \\ \frac {a_i}{b_i} & = 1 \quad \quad \small \color{#3D99F6} \text{Note that } a_i = b_i > 0 \\ \implies \frac {a_1a_2a_3...a_{43}}{b_1b_2b_3...b_{43}} & = \boxed{1} \end{aligned}

{ tan a i ( 4 5 i ) = tan ( 4 4 i ) tan b i ( 4 5 + i ) = tan ( 4 6 + i ) Given \large\begin{aligned}\begin{cases}\tan^{a_{i}}(45^\circ-i^\circ)&=\tan(44^\circ-i^\circ)\hspace {5mm}\\ \large\tan^{b_{i}}(45^\circ+i^\circ)&=\tan(46^\circ+i^\circ)\color{#3D99F6}\end{cases}\color{#3D99F6}\small\text{Given}\\\\\end{aligned} Now we have, tan b i ( 4 5 + i ) = tan ( 4 6 + i ) = cot ( 4 4 i ) ( 46 + i ) + ( 44 i ) = 90 , tan ( 9 0 i ) = cot ( i ) = 1 tan ( 4 4 i ) = 1 tan a i ( 4 5 i ) tan ( 4 4 i ) = tan a i ( 4 5 i ) tan b i ( 4 5 + i ) = cot a i ( 4 5 i ) tan b i ( 4 5 + i ) = tan a i ( 4 5 + i ) ( 45 + i ) + ( 45 i ) = 90 , cot ( 9 0 i ) = tan ( i ) b i = a i As, 1 < tan ( 4 5 + i ) < a i b i = 1 i = 1 43 a i b i = 1 43 = 1 \color{#333333}\large\begin{aligned}\text{Now we have,}\\\\ \tan^{b_{i}}(45^\circ+i^\circ)&=\tan(46^\circ+i^\circ)\\\\ &=\cot(44^\circ-i^\circ)\hspace{5mm}\small\color{#3D99F6}{(46+i)+(44-i)=90},\tan(90^\circ-i^\circ)=\cot(i^\circ)\\\\ &=\dfrac{1}{\tan(44^\circ-i^\circ)}\\\\ &=\dfrac{1}{\tan^{a_{i}}(45^\circ-i^\circ)}\hspace{5mm}\small\color{#3D99F6}\tan(44^\circ-i^\circ)=\tan^{a_{i}}(45^\circ-i^\circ)\\\\ \tan^{b_{i}}(45^\circ+i^\circ)&=\cot^{a_{i}}(45^\circ-i^\circ)\\\\ \tan^{b_{i}}(45^\circ+i^\circ)&=\tan^{a_{i}}(45^\circ+i^\circ)\hspace{5mm}\small\color{#3D99F6}(45+i)+(45-i)=90,\cot(90^\circ-i^\circ)=\tan(i^\circ)\\\\ \implies {b_{i}}&={a_{i}}\hspace{5mm}\small\color{#3D99F6}\text{As,} 1<\tan(45^\circ+i^\circ)<\infty\\\\ \implies\dfrac{a_{i}}{b_{i}}&=1\\ \prod_{i=1}^{43}\dfrac{a_{i}}{b_{i}}&=1^{43}=\color{#EC7300}\boxed{{\color{#333333}1}}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...