⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ d t d x = 3 x + 2 y + 4 z d t d y = 2 x + 2 z d t d z = 4 x + 2 y + 3 z
The general solution to the above differential system is as follows:
⎩ ⎪ ⎨ ⎪ ⎧ x ( t ) = c 1 x 1 ( t ) + c 2 x 2 ( t ) + c 3 x 3 ( t ) y ( t ) = c 1 y 1 ( t ) + c 2 y 2 ( t ) + c 3 y 3 ( t ) z ( t ) = c 1 z 1 ( t ) + c 2 z 2 ( t ) + c 3 z 3 ( t ) where ∣ ∣ ∣ ∣ ∣ ∣ x j ( t ) y j ( t ) z j ( t ) ∣ ∣ ∣ ∣ ∣ ∣ = v j ∗ e λ j t
for ( 1 < = j < = 3 )
Let
v 1 = ∣ ∣ ∣ ∣ ∣ ∣ A 1 B 1 2 ∣ ∣ ∣ ∣ ∣ ∣
v 2 = ∣ ∣ ∣ ∣ ∣ ∣ 1 B 2 0 ∣ ∣ ∣ ∣ ∣ ∣
v 3 = ∣ ∣ ∣ ∣ ∣ ∣ 0 B 2 1 ∣ ∣ ∣ ∣ ∣ ∣ .
If x ( 0 ) = 0 , y ( 0 ) = 1 , and z ( 0 ) = 2 and c 1 + c 2 + c 3 = b a , where a and b are coprime positive integers,
Find: a + b .
H i n t : The eigenvalues are λ 1 ∈ R with Eigenvector v 1 and λ 2 = λ 3 ∈ R with two Linear Independent Eigenvectors v 2 and v 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let x ( t ) = A ∗ e λ t y ( t ) = B ∗ e λ t z ( t ) = C ∗ e λ t
⟹ d t d x = λ ∗ A ∗ e λ t , d t d y = λ ∗ B ∗ e λ t , d t d x = λ ∗ C ∗ e λ t
Replacing the above in the differential system we obtain the system:
⎣ ⎡ 3 − λ 2 4 2 − λ 2 4 2 3 − λ ⎦ ⎤ ∗ ∣ ∣ ∣ ∣ ∣ ∣ A B C ∣ ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ ∣ 0 0 0 ∣ ∣ ∣ ∣ ∣ ∣
We want a nontrivial solution so let det ( ⎣ ⎡ 3 − λ 2 4 2 − λ 2 4 2 3 − λ ⎦ ⎤ ) = 0
⟹ ( λ + 1 ) 2 ∗ ( 8 − λ ) = 0 ⟹ λ = − 1 , λ = 8
For λ = 8 we obtain the system:
⎣ ⎢ ⎢ ⎡ − 5 2 4 2 − 8 2 4 2 − 5 0 0 0 ⎦ ⎥ ⎥ ⎤
Using row operations we obtain:
⎣ ⎢ ⎢ ⎡ 1 0 0 − 4 − 2 0 1 1 0 0 0 0 ⎦ ⎥ ⎥ ⎤
⟹
A 1 − 4 B 1 + C 1 = 0 − 2 B 1 + C 1 = 0
Let C 1 = 2 ⟹ B 1 = 1 ⟹ A 1 = 2
v 1 = ∣ ∣ ∣ ∣ ∣ ∣ 2 1 2 ∣ ∣ ∣ ∣ ∣ ∣
For λ = − 1 we obtain:
⎣ ⎢ ⎢ ⎡ 4 2 4 2 1 2 4 2 4 0 0 0 ⎦ ⎥ ⎥ ⎤
Using row operations we obtain:
⎣ ⎢ ⎢ ⎡ 4 0 0 2 0 0 4 0 0 0 0 0 ⎦ ⎥ ⎥ ⎤
⟹
2 A 2 + B 2 + 2 C 2 = 0
We have two degrees of freedom so let A 2 and C 2 be arbitrary variables ⟹ B 2 = − 2 A 2 − 2 C 2 .
For A 2 = 1 , C 2 = 0 ⟹ B 2 = − 2 and v 2 = ∣ ∣ ∣ ∣ ∣ ∣ 1 − 2 0 ∣ ∣ ∣ ∣ ∣ ∣
For A 2 = 0 , C 2 = 1 ⟹ B 2 = − 2 and v 3 = ∣ ∣ ∣ ∣ ∣ ∣ 0 − 2 1 ∣ ∣ ∣ ∣ ∣ ∣
Every solution has the form:
∣ ∣ ∣ ∣ ∣ ∣ A 2 B 2 C 2 ∣ ∣ ∣ ∣ ∣ ∣ = A 2 ∣ ∣ ∣ ∣ ∣ ∣ 1 − 2 0 ∣ ∣ ∣ ∣ ∣ ∣ + C 2 ∣ ∣ ∣ ∣ ∣ ∣ 0 − 2 1 ∣ ∣ ∣ ∣ ∣ ∣
∴ The general solution is:
x ( t ) = 2 c 1 e 8 t + c 2 e − t y ( t ) = c 1 e 8 t − 2 c 2 e − t − 2 c 3 e − t z ( t ) = 2 c 1 e 8 t + c 3 e − t
x ( 0 ) = 0 , y ( 0 ) = 1 , and z ( 0 ) = 2 ⟹
( 1 ) : 2 c 1 + c 2 = 0 ( 2 ) : c 1 − 2 c 2 − 2 c 3 = 1 ( 3 ) : 2 c 1 + c 3 = 2
Multiplying equation ( 1 ) by 2 and adding to equation ( 2 ) we obtain:
5 c 1 − 2 c 3 = 1 2 c 1 + c 3 = 2
⟹ c 1 = 9 5 ⟹ c 3 = 9 8 ⟹ c 2 = 9 − 1 0 ⟹ c 1 + c 2 + c 2 = 9 3 = 3 1 = b a
⟹ a + b = 4 .