⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ d t d x = 5 x − 3 y − 2 z d t d y = 8 x − 5 y − 4 z d t d z = − 4 x + 3 y + 3 z
Let v 1 and v 2 be two linear independent eigenvectors so we have two linear independent solutions e λ t v 1 and e λ t v 2 , where
v 1 = ∣ ∣ ∣ ∣ ∣ ∣ A 1 2 3 ∣ ∣ ∣ ∣ ∣ ∣
v 2 = ∣ ∣ ∣ ∣ ∣ ∣ A 1 0 6 ∣ ∣ ∣ ∣ ∣ ∣
The third solution has the form:
t e λ t α + e λ t β .
If α and β satisfy:
( A 3 x 3 − λ I ) α = 0 and ( A 3 x 3 − λ I ) β = α
and α = a v 1 + b v 2
where α = ∣ ∣ ∣ ∣ ∣ ∣ 3 a + 6 2 a 3 a + 1 2 ∣ ∣ ∣ ∣ ∣ ∣ and β = ∣ ∣ ∣ ∣ ∣ ∣ p 1 3 0 ∣ ∣ ∣ ∣ ∣ ∣
and the general solution is:
⎩ ⎪ ⎨ ⎪ ⎧ x ( t ) = c 1 x 1 ( t ) + c 2 x 2 ( t ) + c 3 x 3 ( t ) y ( t ) = c 1 y 1 ( t ) + c 2 y 2 ( t ) + c 3 y 3 ( t ) z ( t ) = c 1 z 1 ( t ) + c 2 z 2 ( t ) + c 3 z 3 ( t ) and x ( 0 ) = 0 , y ( 0 ) = 1 , z ( 0 ) = 2 and c 1 + c 2 + c 3 = n m , where m and n are coprime positive integers,
Find: m + n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let x ( t ) = A ∗ e λ t y ( t ) = B ∗ e λ t z ( t ) = C ∗ e λ t
⟹ d t d x = λ ∗ A ∗ e λ t , d t d y = λ ∗ B ∗ e λ t , d t d z = λ ∗ C ∗ e λ t
Replacing the above in the differential system we obtain the system:
⎣ ⎡ 5 − λ 8 − 4 − 3 − 5 − λ 3 − 2 − 4 3 − λ ⎦ ⎤ ∗ ∣ ∣ ∣ ∣ ∣ ∣ A B C ∣ ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ ∣ 0 0 0 ∣ ∣ ∣ ∣ ∣ ∣
We want a nontrivial solution so let det ( ⎣ ⎡ 5 − λ 8 − 4 − 3 − 5 − λ 3 − 2 − 4 3 − λ ⎦ ⎤ ) = 0
⟹ − ( λ 3 − 3 λ 2 + 3 λ − 1 ) = 0 ⟹
( λ − 1 ) 3 = 0 ⟹ λ = 1
For λ = 1 we obtain the system:
⎣ ⎢ ⎢ ⎡ 4 8 − 4 − 3 − 6 3 − 2 − 4 2 0 0 0 ⎦ ⎥ ⎥ ⎤
Applying the row operations:
2 1 ∗ R o w 2
− 1 ∗ R o w 1 + R o w 3
R o w 1 + R o w 2
we obtain:
⎣ ⎢ ⎢ ⎡ 4 0 0 − 3 0 0 − 2 0 0 0 0 0 ⎦ ⎥ ⎥ ⎤
⟹ 4 A 1 − 3 B 1 − 2 C 1 = 0
We have two degrees of freedom.
Let C 1 = 3 and B 1 = 2 ⟹ A 1 = 3
Let B 1 = 0 and C 1 = 6 ⟹ A 1 = 3
⟹
v 1 = ∣ ∣ ∣ ∣ ∣ ∣ 3 2 3 ∣ ∣ ∣ ∣ ∣ ∣
v 2 = ∣ ∣ ∣ ∣ ∣ ∣ 3 0 6 ∣ ∣ ∣ ∣ ∣ ∣
For the third solution we want:
t e λ t α + e λ t β that satisfies
( A 3 x 3 − λ I ) α = 0 and ( A 3 x 3 − λ I ) β = 0
where,
α = a v 1 + b v 2 = ∣ ∣ ∣ ∣ ∣ ∣ 3 a + 3 b 2 a 3 a + 6 b ∣ ∣ ∣ ∣ ∣ ∣ .
α satisfies ( A 3 x 3 − λ I ) α = 0
For ( A 3 x 3 − λ I ) β = α we obtain:
4 A ∗ − 3 B ∗ − 2 C ∗ = 3 a + 3 b 8 A ∗ − 6 B ∗ − 4 C ∗ = 2 a − 4 A ∗ + 3 B ∗ + 2 C ∗ = 3 a + 6 b
⟹ 2 a + 3 b = 0 .
Let b = 2 ⟹ a = − 3 ⟹
α = ∣ ∣ ∣ ∣ ∣ ∣ − 3 − 6 3 ∣ ∣ ∣ ∣ ∣ ∣
⟹
⎣ ⎡ 4 8 − 4 − 3 − 6 3 − 2 − 4 2 ⎦ ⎤ ∗ β = ∣ ∣ ∣ ∣ ∣ ∣ − 3 − 6 3 ∣ ∣ ∣ ∣ ∣ ∣
Applying row operations:
2 1 ∗ R o w 2
− 1 ∗ R o w 1 + R o w 3
R o w 1 + R o w 2
we obtain:
⎣ ⎢ ⎢ ⎡ 4 0 0 − 3 0 0 − 2 0 0 − 3 0 0 ⎦ ⎥ ⎥ ⎤
⟹ 4 A ∗ − 3 B ∗ − 2 C ∗ = − 3
Let C ∗ = 0 and B ∗ = 3 ⟹ A ∗ = 2 3
⟹
β = ∣ ∣ ∣ ∣ ∣ ∣ ∣ 2 3 3 0 ∣ ∣ ∣ ∣ ∣ ∣ ∣ .
∴ The general solution is:
⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ x ( t ) = ( 3 c 1 + 3 c 2 + ( − 3 t + 2 3 ) c 3 ) e t y ( t ) = ( 2 c 1 + c 2 + ( − 6 t + 3 ) c 3 ) e t z ( t ) = ( 3 c 1 + 6 c 2 + 3 t c 3 ) e t
x ( 0 ) = 0 , y ( 0 ) = 1 , z ( 0 ) = 2 ⟹
6 c 1 + 6 c 2 + 3 c 3 = 0 2 c 1 + 3 c 3 = 1 3 c 1 + 6 c 2 = 2
⟹
− 6 c 2 + 3 c 3 = − 4 6 c 2 − 6 c 3 = − 3
⟹
c 3 = 3 7 ⟹ c 2 = 6 1 1 ⟹ c 1 = − 3 ⟹
c 1 + c 2 + c 3 = 6 7 = n m ⟹ m + n = 1 3