A calculus problem by Rocco Dalto

Calculus Level pending

{ d x d t = 5 x 3 y 2 z d y d t = 8 x 5 y 4 z d z d t = 4 x + 3 y + 3 z \begin{cases} \dfrac{dx}{dt} = 5x - 3y - 2z \\ \dfrac{dy}{dt} = 8x - 5y - 4z\\ \dfrac{dz}{dt} = -4x + 3y + 3z \end{cases}

Let v 1 \vec{v_{1}} and v 2 \vec{v_{2}} be two linear independent eigenvectors so we have two linear independent solutions e λ t v 1 e^{\lambda t} \vec{v_{1}} and e λ t v 2 e^{\lambda t} \vec{v_{2}} , where

v 1 = A 1 2 3 \vec{v_{1}} = \begin{vmatrix}{A_{1}} \\ 2 \\ 3 \\ \end{vmatrix}

v 2 = A 1 0 6 \vec{v_{2}} = \begin{vmatrix}{A_{1}} \\ 0 \\ 6 \\ \end{vmatrix}

The third solution has the form:

t e λ t α + e λ t β t e^{\lambda t} \vec{\alpha} + e^{\lambda t} \vec{\beta} .

If α \vec{\alpha} and β \vec{\beta} satisfy:

( A 3 x 3 λ I ) α = 0 (A_{3 x 3} - \lambda I) \vec{\alpha} = \vec{0} and ( A 3 x 3 λ I ) β = α (A_{3 x 3} - \lambda I) \vec{\beta} = \vec{\alpha}

and α = a v 1 + b v 2 \vec{\alpha} = a \vec{v_{1}} + b \vec{v_{2}}

where α = 3 a + 6 2 a 3 a + 12 \vec{\alpha} = \begin{vmatrix}{3 a + 6} \\ 2 a \\ 3 a + 12 \\ \end{vmatrix} and β = p 1 3 0 \vec{\beta} = \begin{vmatrix}{p_{1}} \\ 3 \\ 0 \\ \end{vmatrix}

and the general solution is:

{ x ( t ) = c 1 x 1 ( t ) + c 2 x 2 ( t ) + c 3 x 3 ( t ) y ( t ) = c 1 y 1 ( t ) + c 2 y 2 ( t ) + c 3 y 3 ( t ) z ( t ) = c 1 z 1 ( t ) + c 2 z 2 ( t ) + c 3 z 3 ( t ) \begin{cases} x(t) = c_{1}x_{1}(t) + c_{2}x_{2}(t) + c_{3}x_{3}(t) \\ y(t) = c_{1}y_{1}(t) + c_{2} y_{2}(t) + c_{3}y_{3}(t) \\ z(t) = c_{1}z_{1}(t) + c_{2}z_{2}(t) + c_{3}z_{3}(t) \end{cases} and x ( 0 ) = 0 , y ( 0 ) = 1 , z ( 0 ) = 2 x(0) = 0, \: y(0) = 1, z(0) = 2 and c 1 + c 2 + c 3 = m n c_{1} + c_{2} + c_{3} = \dfrac{m}{n} , where m m and n n are coprime positive integers,

Find: m + n m + n .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 21, 2017

Let x ( t ) = A e λ t x(t) = A * e^{\lambda t} y ( t ) = B e λ t y(t) = B * e^{\lambda t} z ( t ) = C e λ t z(t) = C * e^{\lambda t}

d x d t = λ A e λ t , d y d t = λ B e λ t , d z d t = λ C e λ t \implies \dfrac{dx}{dt} = \lambda * A * e^{\lambda t}, \: \dfrac{dy}{dt} = \lambda * B * e^{\lambda t}, \: \dfrac{dz}{dt} = \lambda * C * e^{\lambda t}

Replacing the above in the differential system we obtain the system:

[ 5 λ 3 2 8 5 λ 4 4 3 3 λ ] A B C = 0 0 0 \begin{bmatrix}{5 - \lambda} && {-3} && {-2}\\ {8} && {-5 - \lambda} && {-4}\\ {-4} && {3} && {3 - \lambda} \end{bmatrix} * \begin{vmatrix}{A} \\{B} \\ {C} \\ \end{vmatrix} = \begin{vmatrix}{0} \\{0} \\ {0} \\ \end{vmatrix}

We want a nontrivial solution so let det ( [ 5 λ 3 2 8 5 λ 4 4 3 3 λ ] ) = 0 \det(\begin{bmatrix}{5 - \lambda} && {-3} && {-2}\\ {8} && {-5 - \lambda} && {-4}\\ {-4} && {3} && {3 - \lambda} \end{bmatrix}) = 0

( λ 3 3 λ 2 + 3 λ 1 ) = 0 \implies -(\lambda^3 - 3 \lambda^2 + 3 \lambda - 1) = 0 \implies

( λ 1 ) 3 = 0 λ = 1 (\lambda - 1)^3 = 0 \implies \lambda = 1

For λ = 1 \lambda = 1 we obtain the system:

[ 4 3 2 0 8 6 4 0 4 3 2 0 ] \left[ \begin{array}{ccc|c} 4 & -3 & -2 & 0\\ 8 & -6 & -4 & 0\\ -4 & 3 & 2 & 0 \\ \ \end{array} \right]

Applying the row operations:

1 2 R o w 2 \dfrac{1}{2} * Row_{2}

1 R o w 1 + R o w 3 -1 * Row_{1} + Row_{3}

R o w 1 + R o w 2 Row_{1} + Row_{2}

we obtain:

[ 4 3 2 0 0 0 0 0 0 0 0 0 ] \left[ \begin{array}{ccc|c} 4 & -3 & -2 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \\ \ \end{array} \right]

4 A 1 3 B 1 2 C 1 = 0 \implies 4 A_{1} - 3 B_{1} - 2 C_{1} = 0

We have two degrees of freedom.

Let C 1 = 3 C_{1} = 3 and B 1 = 2 A 1 = 3 B_{1} = 2 \implies A_{1} =3

Let B 1 = 0 B_{1} = 0 and C 1 = 6 A 1 = 3 C_{1} = 6 \implies A_{1} = 3

\implies

v 1 = 3 2 3 \vec{v_{1}} = \begin{vmatrix}{3} \\ 2 \\ 3 \\ \end{vmatrix}

v 2 = 3 0 6 \vec{v_{2}} = \begin{vmatrix}{3} \\ 0 \\ 6 \\ \end{vmatrix}

For the third solution we want:

t e λ t α + e λ t β t e^{\lambda t} \vec{\alpha} + e^{\lambda t} \vec{\beta} that satisfies

( A 3 x 3 λ I ) α = 0 (A_{3 x 3} - \lambda I) \vec{\alpha} = \vec{0} and ( A 3 x 3 λ I ) β = 0 (A_{3 x 3} - \lambda I) \vec{\beta} = \vec{0}

where,

α = a v 1 + b v 2 = 3 a + 3 b 2 a 3 a + 6 b \vec{\alpha} = a \vec{v_{1}} + b \vec{v_{2}} = \begin{vmatrix}{3 a + 3 b} \\ 2 a \\ 3 a + 6 b\\ \end{vmatrix} .

α \vec{\alpha} satisfies ( A 3 x 3 λ I ) α = 0 (A_{3 x 3} - \lambda I) \vec{\alpha} = \vec{0}

For ( A 3 x 3 λ I ) β = α (A_{3 x 3} - \lambda I) \vec{\beta} = \vec{\alpha} we obtain:

4 A 3 B 2 C = 3 a + 3 b 4 A^{*} - 3 B^{*} - 2 C^{*} = 3 a + 3 b 8 A 6 B 4 C = 2 a 8 A^{*} - 6 B^{*} - 4 C^{*} = 2 a 4 A + 3 B + 2 C = 3 a + 6 b -4 A^{*} + 3 B^{*} + 2 C^{*} = 3 a + 6 b

2 a + 3 b = 0 \implies 2 a + 3 b = 0 .

Let b = 2 a = 3 b = 2 \implies a = -3 \implies

α = 3 6 3 \vec{\alpha} = \begin{vmatrix}{-3} \\ -6 \\ 3 \\ \end{vmatrix}

\implies

[ 4 3 2 8 6 4 4 3 2 ] β = 3 6 3 \begin{bmatrix}{4} && {-3} && {-2}\\ {8} && {-6} && {-4}\\ {-4} && {3} && {2} \end{bmatrix} * \vec{\beta} = \begin{vmatrix}{-3} \\{-6} \\ {3} \\ \end{vmatrix}

Applying row operations:

1 2 R o w 2 \dfrac{1}{2} * Row_{2}

1 R o w 1 + R o w 3 -1 * Row_{1} + Row_{3}

R o w 1 + R o w 2 Row_{1} + Row_{2}

we obtain:

[ 4 3 2 3 0 0 0 0 0 0 0 0 ] \left[ \begin{array}{ccc|c} 4 & -3 & -2 & -3\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \\ \ \end{array} \right]

4 A 3 B 2 C = 3 \implies 4 A^{*} - 3 B^{*} - 2 C^{*} = -3

Let C = 0 C^{*} = 0 and B = 3 A = 3 2 B^{*} = 3 \implies A^{*} = \dfrac{3}{2}

\implies

β = 3 2 3 0 \vec{\beta} = \begin{vmatrix}{\dfrac{3}{2}} \\ 3 \\ 0 \\ \end{vmatrix} .

\therefore The general solution is:

{ x ( t ) = ( 3 c 1 + 3 c 2 + ( 3 t + 3 2 ) c 3 ) e t y ( t ) = ( 2 c 1 + c 2 + ( 6 t + 3 ) c 3 ) e t z ( t ) = ( 3 c 1 + 6 c 2 + 3 t c 3 ) e t \begin{cases} x(t) = (3 c_{1} + 3 c_{2} + (-3 t + \dfrac{3}{2}) c_{3}) e^{t} \\ y(t) = (2 c_{1} + c_{2} + (-6 t + 3) c_{3}) e^{t} \\ z(t) = (3 c_{1} + 6 c_{2} + 3 t c_{3}) e^{t} \end{cases}

x ( 0 ) = 0 , y ( 0 ) = 1 , z ( 0 ) = 2 x(0) = 0, \: y(0) = 1, z(0) = 2 \implies

6 c 1 + 6 c 2 + 3 c 3 = 0 6 c_{1} + 6 c_{2} + 3 c_{3} = 0 2 c 1 + 3 c 3 = 1 2 c_{1} + 3 c_{3} = 1 3 c 1 + 6 c 2 = 2 3 c_{1} + 6 c_{2} = 2

\implies

6 c 2 + 3 c 3 = 4 -6 c_{2} + 3 c_{3} = -4 6 c 2 6 c 3 = 3 6 c_{2} - 6 c_{3} = -3

\implies

c 3 = 7 3 c 2 = 11 6 c 1 = 3 c_{3} = \dfrac{7}{3} \implies c_{2} = \dfrac{11}{6} \implies c_{1} = -3 \implies

c 1 + c 2 + c 3 = 7 6 = m n m + n = 13 c_{1} + c_{2} + c_{3} = \dfrac{7}{6} = \dfrac{m}{n} \implies m + n = \boxed{13}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...