⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ d t d x = x + 2 y + 4 z + 3 w d t d y = 2 z + w d t d z = z + w d t d w = 2 w
The general solution to the above differential system is as follows:
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ x ( t ) = c 1 x 1 ( t ) + c 2 x 2 ( t ) + c 3 x 3 ( t ) + c 4 x 4 ( t ) y ( t ) = c 1 y 1 ( t ) + c 2 y 2 ( t ) + c 3 y 3 ( t ) + c 4 y 4 t z ( t ) = c 1 z 1 ( t ) + c 2 z 2 ( t ) + c 3 z 3 ( t ) + c 4 z 4 ( t ) w ( t ) = c 1 w 1 ( t ) + c 2 w 2 ( t ) + c 3 w 3 ( t ) + c 4 w 4 ( t ) where ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ x j ( t ) y j ( t ) z j ( t ) w j ( t ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ A j B j C j D j ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∗ e λ j t
for ( 1 < = j < = 3 ) , and ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ x 4 ( t ) y 4 ( t ) z 4 ( t ) w 4 ( t ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ A 4 + A 3 ∗ t B 4 + B 3 ∗ t C 4 + C 3 ∗ t D 4 + D 3 ∗ t ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∗ e λ 3 t
If B 1 = 1 , D 2 = 1 , A 3 = 1 , A 4 = 1 and x ( 0 ) = 0 , y ( 0 ) = 1 , z ( 0 ) = 2 , and w ( 0 ) = 0 , Find c 1 + c 2 + c 3 + c 4 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let x ( t ) = A ∗ e λ t y ( t ) = B ∗ e λ t z ( t ) = C ∗ e λ t w ( t ) = D ∗ e λ t
⟹ d t d x = λ ∗ A ∗ e λ t , d t d y = λ ∗ B ∗ e λ t , d t d z = λ ∗ C ∗ e λ t , d t d w = λ ∗ D ∗ e λ t
Replacing the above in the differential system we obtain the system:
⎣ ⎢ ⎢ ⎡ 1 − λ 0 0 0 2 − λ 0 0 4 2 1 − λ 0 3 1 1 2 − λ ⎦ ⎥ ⎥ ⎤ ∗ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ A B C D ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 0 0 0 0 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
We want a nontrivial solution so let
det ⎣ ⎢ ⎢ ⎡ 1 − λ 0 0 0 2 − λ 0 0 4 2 1 − λ 0 3 1 1 2 − λ ⎦ ⎥ ⎥ ⎤ = 0
⟹ − λ ( 1 − λ ) 2 ( 2 − λ ) = 0 ⟹ λ = 0 , 1 , 2 .
For λ = 0 we obtain the system:
⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1 0 0 0 2 0 0 0 4 2 1 0 3 1 1 2 0 0 0 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
Applying row operations we obtain:
⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 1 0 0 0 2 0 0 0 4 0 1 0 3 0 1 1 0 0 0 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
D 1 = 0 ⟹ C 1 = 0 ⟹ A 1 + 2 B 1 = 0
Let B 1 = 1 ⟹ A 1 = − 2 ⟹
v 1 = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ − 2 1 0 0 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
For λ = 2 we obtain the system:
⎣ ⎢ ⎢ ⎢ ⎢ ⎡ − 1 0 0 0 2 − 2 0 0 4 2 − 1 0 3 1 1 0 0 0 0 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
Applying row operations we obtain:
⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ − 1 0 0 0 0 1 0 0 0 2 − 1 0 1 0 − 2 3 1 0 0 0 0 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
− A 2 + 1 0 D 2 = 0 B 2 − 2 3 D 2 = 0 C 2 − D 2 = 0
Let D 2 = 1 ⟹ C 2 = 1 , B 2 = 2 3 , A 2 = 1 0
⟹ v 2 = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 1 0 2 3 1 1 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
For λ = 1 we obtain the system:
⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 0 0 0 0 2 − 1 0 0 4 2 0 0 3 1 1 1 0 0 0 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
D 3 = 0 ⟹ 2 B 3 + 4 C 3 = 0 − B 3 + 2 C 3 = 0
⟹ B 3 = C 3 = 0
Let A 3 = 1
⟹ v 3 = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 1 0 0 0 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
Let A 4 X 4 = ⎣ ⎢ ⎢ ⎡ 1 0 0 0 2 0 0 0 4 2 1 0 3 1 1 2 ⎦ ⎥ ⎥ ⎤
For ( A 4 X 4 − I ) v 4 = v 3
D 4 = 0 ⟹ 2 B 3 + 4 C 3 = 1 − B 3 + 2 C 3 = 0
⟹ C 4 = 8 1 ⟹ 4 1
Let A 4 = 1
⟹ v 4 = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 1 4 1 8 1 0 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∴ The general solution is:
x ( t ) = − 2 c 1 + 1 0 c 2 e 2 t + c 3 e t + ( t + 1 ) c 4 e t y ( t ) = c 1 + 2 3 c 2 e 2 t + 4 1 c 4 e t z ( t ) = c 2 e 2 t + 8 1 c 4 e t w ( t ) = c 2 e 2 t
x ( 0 ) = 0 , y ( 0 ) = 1 , z ( 0 ) = 2 , and w ( 0 ) = 0 ⟹
− 2 c 1 + 1 0 c 2 + + c 3 + c 4 = 0 c 1 + 2 3 c 2 + 4 1 c 4 = 1 c 2 + 8 1 c 4 = 2 c 2 = 0
c 2 = 0 ⟹ c 4 = 1 6 ⟹ c 1 = − 3 ⟹ c 3 = − 2 2
⟹ c 1 + c 2 + c 3 + c 4 = − 9 .