A calculus problem by Rocco Dalto

Calculus Level 4

{ d x d t = x + 2 y + 4 z + 3 w d y d t = 2 z + w d z d t = z + w d w d t = 2 w \begin{cases} \dfrac{dx}{dt} = x + 2y + 4z + 3w\\ \dfrac{dy}{dt} = 2z + w\\ \dfrac{dz}{dt} = z + w\\\dfrac{dw}{dt} = 2w\end{cases}

The general solution to the above differential system is as follows:

{ x ( t ) = c 1 x 1 ( t ) + c 2 x 2 ( t ) + c 3 x 3 ( t ) + c 4 x 4 ( t ) y ( t ) = c 1 y 1 ( t ) + c 2 y 2 ( t ) + c 3 y 3 ( t ) + c 4 y 4 t z ( t ) = c 1 z 1 ( t ) + c 2 z 2 ( t ) + c 3 z 3 ( t ) + c 4 z 4 ( t ) w ( t ) = c 1 w 1 ( t ) + c 2 w 2 ( t ) + c 3 w 3 ( t ) + c 4 w 4 ( t ) \begin{cases} x(t) = c_{1}x_{1}(t) + c_{2}x_{2}(t) + c_{3}x_{3}(t) + c_{4}x_{4}(t)\\ y(t) = c_{1}y_{1}(t) + c_{2} y_{2}(t) + c_{3}y_{3}(t) + c_{4}y_{4}t\\ z(t) = c_{1}z_{1}(t) + c_{2}z_{2}(t) + c_{3}z_{3}(t) + c_{4}z_{4}(t)\\ w(t) = c_{1}w_{1}(t) + c_{2}w_{2}(t) + c_{3}w_{3}(t) + c_{4}w_{4}(t)\\ \end{cases} where x j ( t ) y j ( t ) z j ( t ) w j ( t ) = A j B j C j D j e λ j t \begin{vmatrix}{x_{j}(t)} \\{y_{j}(t)} \\ {z_{j}(t)} \\ {w_{j}(t)}\\ \end{vmatrix} = \begin{vmatrix}{A_{j}} \\{B_{j}} \\ {C_{j}} \\ {D_{j}} \\ \end{vmatrix} * e^{\lambda_{j} t}

for ( 1 < = j < = 3 ) (1 <= j <= 3) , and x 4 ( t ) y 4 ( t ) z 4 ( t ) w 4 ( t ) = A 4 + A 3 t B 4 + B 3 t C 4 + C 3 t D 4 + D 3 t e λ 3 t \begin{vmatrix}{x_{4}(t)} \\{y_{4}(t)} \\ {z_{4}(t)} \\ {w_{4}(t)} \\ \end{vmatrix} = \begin{vmatrix}{A_{4} + A_{3} * t} \\{B_{4} + B_{3} * t}\\ {C_{4} + C_{3} * t} \\ {D_{4} + D_{3} * t} \end{vmatrix} * e^{\lambda_{3}t }

If B 1 = 1 , D 2 = 1 , A 3 = 1 , A 4 = 1 B_{1} = 1, \: D_{2} = 1, \: A_{3} = 1, \: A_{4} = 1 and x ( 0 ) = 0 x(0) = 0 , y ( 0 ) = 1 y(0) = 1 , z ( 0 ) = 2 z(0) = 2 , and w ( 0 ) = 0 w(0) = 0 , Find c 1 + c 2 + c 3 + c 4 . c_{1} + c_{2} + c_{3} + c_{4}.


The answer is -9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 23, 2017

Let x ( t ) = A e λ t x(t) = A * e^{\lambda t} y ( t ) = B e λ t y(t) = B * e^{\lambda t} z ( t ) = C e λ t z(t) = C * e^{\lambda t} w ( t ) = D e λ t w(t) = D * e^{\lambda t}

d x d t = λ A e λ t , d y d t = λ B e λ t , d z d t = λ C e λ t , d w d t = λ D e λ t \implies \dfrac{dx}{dt} = \lambda * A * e^{\lambda t}, \: \dfrac{dy}{dt} = \lambda * B * e^{\lambda t}, \: \dfrac{dz}{dt} = \lambda * C * e^{\lambda t}, \: \dfrac{dw}{dt} = \lambda * D * e^{\lambda t}

Replacing the above in the differential system we obtain the system:

[ 1 λ 2 4 3 0 λ 2 1 0 0 1 λ 1 0 0 0 2 λ ] A B C D = 0 0 0 0 \begin{bmatrix}{1 - \lambda} && {2} && {4} && {3} \\ {0} && {- \lambda} && {2} && {1} \\ {0} && {0} && {1 - \lambda} && {1} \\ {0} && {0} && {0} && {2 - \lambda}\end{bmatrix} * \begin{vmatrix}{A} \\{B} \\ {C} \\ {D} \\ \end{vmatrix} = \begin{vmatrix}{0} \\{0} \\ {0} \\ {0} \end{vmatrix}

We want a nontrivial solution so let

det [ 1 λ 2 4 3 0 λ 2 1 0 0 1 λ 1 0 0 0 2 λ ] = 0 \det\begin{bmatrix}{1 - \lambda} && {2} && {4} && {3} \\ {0} && {- \lambda} && {2} && {1} \\ {0} && {0} && {1 - \lambda} && {1} \\ {0} && {0} && {0} && {2 - \lambda}\end{bmatrix} = 0

λ ( 1 λ ) 2 ( 2 λ ) = 0 λ = 0 , 1 , 2 \implies -\lambda (1 - \lambda)^2 (2 - \lambda) = 0 \implies \lambda = 0,1,2 .

For λ = 0 \lambda = 0 we obtain the system:

[ 1 2 4 3 0 0 0 2 1 0 0 0 1 1 0 0 0 0 2 0 ] \left[ \begin{array}{cccc|c} 1 & 2 & 4 & 3 & 0\\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ \ \end{array} \right]

Applying row operations we obtain:

[ 1 2 4 3 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 ] \left[ \begin{array}{cccc|c} 1 & 2 & 4 & 3 & 0\\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \ \end{array} \right]

D 1 = 0 C 1 = 0 D_{1} = 0 \implies C_{1} = 0 \implies A 1 + 2 B 1 = 0 A_{1} + 2 B_{1} = 0

Let B 1 = 1 A 1 = 2 B_{1} = 1 \implies A_{1} = -2 \implies

v 1 = 2 1 0 0 \vec{v_{1}} = \begin{vmatrix}{-2} \\{1} \\ {0} \\ {0} \end{vmatrix}

For λ = 2 \lambda = 2 we obtain the system:

[ 1 2 4 3 0 0 2 2 1 0 0 0 1 1 0 0 0 0 0 0 ] \left[ \begin{array}{cccc|c} -1 & 2 & 4 & 3 & 0\\ 0 & -2 & 2 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \ \end{array} \right]

Applying row operations we obtain:

[ 1 0 0 10 0 0 1 2 3 2 0 0 0 1 1 0 0 0 0 0 0 ] \left[ \begin{array}{cccc|c} -1 & 0 & 0 & 10 & 0\\ 0 & 1 & 2 & -\dfrac{3}{2} & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \ \end{array} \right]

A 2 + 10 D 2 = 0 -A_{2} + 10 D_{2} = 0 B 2 3 2 D 2 = 0 B_{2} - \dfrac{3}{2} D_{2} = 0 C 2 D 2 = 0 C_{2} - D_{2} = 0

Let D 2 = 1 C 2 = 1 , B 2 = 3 2 , A 2 = 10 D_{2} = 1 \implies C_{2} = 1, B_{2} = \dfrac{3}{2}, A_{2} = 10

v 2 = 10 3 2 1 1 \implies \vec{v_{2}} = \begin{vmatrix}{10} \\{\dfrac{3}{2}} \\ {1} \\ {1} \end{vmatrix}

For λ = 1 \lambda = 1 we obtain the system:

[ 0 2 4 3 0 0 1 2 1 0 0 0 0 1 0 0 0 0 1 0 ] \left[ \begin{array}{cccc|c} 0 & 2 & 4 & 3 & 0\\ 0 & -1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \ \end{array} \right]

D 3 = 0 D_{3} = 0 \implies 2 B 3 + 4 C 3 = 0 2 B_{3} + 4 C_{3} = 0 B 3 + 2 C 3 = 0 -B_{3} + 2 C_{3} = 0

B 3 = C 3 = 0 \implies B_{3} = C_{3} = 0

Let A 3 = 1 A_{3} = 1

v 3 = 1 0 0 0 \implies \vec{v_{3}} = \begin{vmatrix}{1} \\{0} \\ {0} \\ {0} \end{vmatrix}

Let A 4 X 4 = [ 1 2 4 3 0 0 2 1 0 0 1 1 0 0 0 2 ] A_{4 \: X \: 4} = \begin{bmatrix}{1} && {2} && {4} && {3} \\ {0} && {0} && {2} && {1} \\ {0} && {0} && {1} && {1} \\ {0} && {0} && {0} && {2}\end{bmatrix}

For ( A 4 X 4 I ) v 4 = v 3 (A_{4 \: X \: 4} - I) \vec{v_{4}} = \vec{v_{3}}

D 4 = 0 D_{4} = 0 \implies 2 B 3 + 4 C 3 = 1 2 B_{3} + 4 C_{3} = 1 B 3 + 2 C 3 = 0 -B_{3} + 2 C_{3} = 0

C 4 = 1 8 1 4 \implies C_{4} = \dfrac{1}{8} \implies \dfrac{1}{4}

Let A 4 = 1 A_{4} = 1

v 4 = 1 1 4 1 8 0 \implies \vec{v_{4}} = \begin{vmatrix}{1} \\{\dfrac{1}{4}} \\ {\dfrac{1}{8}} \\ {0} \end{vmatrix}

\therefore The general solution is:

x ( t ) = 2 c 1 + 10 c 2 e 2 t + c 3 e t + ( t + 1 ) c 4 e t x(t) = -2 c_{1} + 10 c_{2} e^{2t} + c_{3} e^{t} + (t + 1) c_{4} e^{t} y ( t ) = c 1 + 3 2 c 2 e 2 t + 1 4 c 4 e t y(t) = c_{1} + \dfrac{3}{2} c_{2} e^{2t} + \dfrac{1}{4} c_{4} e^{t} z ( t ) = c 2 e 2 t + 1 8 c 4 e t z(t) = c_{2} e^{2t} + \dfrac{1}{8} c_{4} e^{t} w ( t ) = c 2 e 2 t w(t) = c_{2} e^{2t}

x ( 0 ) = 0 x(0) = 0 , y ( 0 ) = 1 y(0) = 1 , z ( 0 ) = 2 z(0) = 2 , and w ( 0 ) = 0 w(0) = 0 \implies

2 c 1 + 10 c 2 + + c 3 + c 4 = 0 -2 c_{1} + 10 c_{2} + + c_{3} + c_{4} = 0 c 1 + 3 2 c 2 + 1 4 c 4 = 1 c_{1} + \dfrac{3}{2} c_{2} + \dfrac{1}{4} c_{4} = 1 c 2 + 1 8 c 4 = 2 c_{2} + \dfrac{1}{8} c_{4} = 2 c 2 = 0 c_{2} = 0

c 2 = 0 c 4 = 16 c 1 = 3 c 3 = 22 c_{2} = 0 \implies c_{4} = 16 \implies c_{1} = -3 \implies c_{3} = -22

c 1 + c 2 + c 3 + c 4 = 9 . \implies c_{1} + c_{2} + c_{3} + c_{4} = \boxed{-9}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...