Area of a Region

Calculus Level 3

Let line L {\bf L} be the tangent line to the curves f ( x ) = x 2 {\bf f(x) = -x^2 } and g ( x ) = x . {\bf g(x) = \sqrt{x}. }

The area bounded by line L {\bf L } and the two curves f ( x ) = x 2 {\bf f(x) = -x^2 } and g ( x ) = x {\bf g(x) = \sqrt{x} } can be represented as m n , {\bf \frac{m}{n}, } where m {\bf m } and n {\bf n } are coprime positive integers.

Find m + n . {\bf m + n .}


Refer to previous problem to find the tangent line to both curves. .


The answer is 101.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 10, 2016

f ( x ) = x 2 {\bf f(x) = -x^2 } and g ( x ) = x {\bf g(x) = \sqrt{x} \implies }

d d x ( f ( x ) ) x = a = 2 a {\bf \frac{d}{dx}(f(x))|_{x = a} = -2a } and d d x ( g ( x ) ) x = b = 1 2 b {\bf \frac{d}{dx}(g(x))|_{x = b} = \frac{1}{2 \sqrt{b}} \implies }

2 a = 1 2 b a = 1 4 b {\bf -2a = \frac{1}{2 \sqrt{b}} \implies a = -\frac{1}{4 \sqrt{b}} }

A : ( a , a 2 ) = ( 1 4 b , 1 16 b ) {\bf A: (a,-a^2) = (-\frac{1}{4 \sqrt{b}} , -\frac{1}{16 b}) } B : ( b , b ) {\bf B: (b, \sqrt{b} ) \implies }

slope m = 1 2 b = 1 4 b ( 16 b 3 2 + 1 4 b 3 2 + 1 ) {\bf m = \frac{1}{2 \sqrt{b}} = \frac{1}{4 \sqrt{b}} (\frac{16 b^\frac{3}{2} + 1}{4 b^\frac{3}{2} + 1}) \implies }

16 b 3 2 + 1 = 8 b 3 2 + 2 8 b 3 2 = 1 b = 1 4 {\bf 16 b^\frac{3}{2} + 1 = 8 b^\frac{3}{2} + 2 \implies 8 b^\frac{3}{2} = 1 \implies b = \frac{1}{4} }

{\bf \implies } slope m = 1 {\bf m = 1 } and a = 1 2 {\bf a = -\frac{1}{2} }

Using A : ( 1 2 , 1 4 ) y = x + 1 4 {\bf A: (-\frac{1}{2},-\frac{1}{4}) \implies y = x + \frac{1}{4} }

y = x + 1 4 {\bf y = x + \frac{1}{4} } is tangent to g ( x ) {\bf g(x)} at B : ( 1 4 , 1 2 ) {\bf B: (\frac{1}{4} , \frac{1}{2}) } and f ( x ) {\bf f(x) } at A : ( 1 2 , 1 4 ) {\bf A: (-\frac{1}{2},-\frac{1}{4}) }

{\bf \therefore } The desired area is A = 1 2 0 ( x + 1 4 + x 2 ) d x + 0 1 4 ( x + 1 4 x 1 2 ) d x = {\bf \int_{-\frac{1}{2}}^{0} (x + \frac{1}{4} + x^2) dx + \int_{0}^{\frac{1}{4}} (x + \frac{1}{4} - x^{\frac{1}{2}}) dx = }

1 4 ( 1 2 0 ( 4 x 2 + 4 x + 1 ) d x + 0 1 4 ( 4 x + 1 4 x 1 2 ) d x ) = {\bf \frac{1}{4} * ( \int_{-\frac{1}{2}}^{0} (4x^2 + 4x + 1) dx + \int_{0}^{\frac{1}{4}} (4x + 1 - 4x^\frac{1}{2}) dx ) = }

1 4 ( ( 4 3 x 3 + 2 x 2 + x ) 1 2 0 + {\bf \frac{1}{4} * ( (\frac{4}{3} x^3 + 2 x^2 + x)|_{-\frac{1}{2}}^{0} + } ( 2 x 2 + x 8 3 x 3 2 ) 0 1 4 ) = 5 96 = m n {\bf (2 x^2 + x - \frac{8}{3} x^\frac{3}{2} )|_{0}^{\frac{1}{4}} ) = \bf \frac{5}{96} = \frac{m}{n} } and m + n = 101. {\bf m + n = 101.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...