Area of a Region

Calculus Level 4

The area enclosed by the curve 4 x 2 + 12 x y + 9 y 2 + 8 13 x + 12 13 y 65 = 0 4x^2 + 12xy + 9y^2 + 8\sqrt{13} x + 12\sqrt{13}y - 65 = 0 on the interval a x a -a \leq x \leq a for a > 0 a>0 , can be expressed as m a n ma\sqrt{n} , where m m and n n are coprime positive integers.

Find m + n m+n .


Refer to previous problem . .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 13, 2016

Using the equations of rotation to rotate the x and y axis we have:

x = x c o s θ y s i n θ {\bf x = x' cos\theta - y' sin\theta }

y = x s i n θ + y c o s θ {\bf y = x' sin\theta + y' cos\theta }

Replacing the equations of rotation in the original equation and simplifying we obtain:

( 4 c o s 2 θ + 12 c o s θ s i n θ + 9 s i n 2 θ ) x 2 + ( 4 s i n 2 θ 12 c o s θ s i n θ + 9 c o s 2 θ ) y 2 + {\bf (4 cos^2\theta + 12 cos\theta sin\theta + 9 sin^2\theta)\:x'^2 + (4 sin^2\theta - 12 cos\theta sin\theta + 9 cos^2\theta)\:y'^2 + }

( 12 13 s i n θ + 8 13 c o s θ ) x + ( 12 13 c o s θ 8 13 s i n θ ) y + ( 5 s i n ( 2 θ ) + 12 c o s ( 2 θ ) ) x y {\bf (12\sqrt{13} sin\theta + 8\sqrt{13} cos\theta)\:x' + (12\sqrt{13} cos\theta - 8\sqrt{13} sin\theta) \:y' + (5 sin(2\theta) + 12 cos(2\theta))\:x'y' } 65 = 0 {\bf - 65 = 0 }

To eliminate the x y {\bf x'y'} term let 5 s i n ( 2 θ ) + 12 c o s ( 2 θ ) = 0 {\bf 5 sin(2\theta) + 12 cos(2\theta) = 0 \implies }

t a n ( 2 θ ) = 12 5 {\bf tan(2\theta) = \frac{-12}{5} \implies } 2 t a n θ 1 t a n 2 θ = 12 5 {\bf \frac{2 tan\theta}{1 - tan^2\theta} = \frac{-12}{5} \implies }

6 t a n 2 θ 5 t a n θ 6 = 0 t a n θ = 5 + 13 12 {\bf 6 tan^2\theta - 5 tan\theta - 6 = 0 \implies tan\theta = \frac{5 +- 13}{12} }

Choosing the positive value for t a n θ t a n θ = 3 2 {\bf tan\theta \implies tan\theta = \frac{3}{2} \implies } c o s θ = 2 13 a n d s i n θ = 3 13 {\bf cos\theta = \frac{2}{\sqrt{13}}\: and \:sin\theta = \frac{3}{\sqrt{13}} \implies }

x = 2 13 x 3 13 y {\bf x = \frac{2}{\sqrt{13}}\: x' - \frac{3}{\sqrt{13}} y' } a n d y = 3 13 x + 2 13 y {\bf \:and \:y = \frac{3}{\sqrt{13}}\:x' + \frac{2}{\sqrt{13}}\:y' }

Replacing the equations of rotation in the original equation and simplifying we obtain:

169 x 2 + 676 x 845 = 0 x 2 + 4 x 5 = 0 ( x + 5 ) ( x 1 ) = 0 {\bf 169x'^2 + 676x' - 845 = 0 \implies x'^2 + 4x' - 5 = 0 \implies (x' + 5)(x' - 1) = 0 }

{\bf \therefore } we have two parallel lines x = 1 a n d x = 5 {\bf x' = 1\: and \: x' = -5 } in the x y {\bf x'y' } plane.

To find parallel lines in the x y {\bf xy } plane:

For x = 1 : {\bf x' = 1: }

y = 0 ( 2 13 , 3 13 ) {\bf y' = 0 \implies (\frac{2}{\sqrt{13}},\:\frac{3}{\sqrt{13}}) }

y = 1 ( 1 13 , 5 13 ) s l o p e m = 2 3 {\bf y' = 1 \implies (-\frac{1}{\sqrt{13}},\:\frac{5}{\sqrt{13}}) \implies \:slope\: m = -\frac{2}{3} \implies } y 5 13 = 2 3 ( x + 1 13 ) {\bf y - \frac{5}{\sqrt{13}} = -\frac{2}{3}(x + \frac{1}{\sqrt{13}}) \implies } 2 13 x 3 13 y + 13 = 0 {\bf -2\sqrt{13}\:x - 3\sqrt{13}\:y + 13 = 0 }

and for x = 5 : {\bf x' = -5:}

y = 0 ( 10 13 , 15 13 ) {\bf y' = 0 \implies (-\frac{10}{\sqrt{13}},\:-\frac{15}{\sqrt{13}}) }

y = 1 ( 13 13 , 13 13 ) s l o p e m = 2 3 {\bf y' = 1 \implies (-\frac{13}{\sqrt{13}},\:-\frac{13}{\sqrt{13}}) \implies \:slope\: m = -\frac{2}{3} \implies } 2 x 3 y 5 13 = 0 {\bf -2x - 3y - 5\sqrt{13} = 0 }

{\bf \therefore } The two parallel lines in the x y {\bf xy } plane are:

2 13 x 3 13 y + 13 = 0 {\bf -2\sqrt{13}\:x - 3\sqrt{13}\:y + 13 = 0 } or y = 2 3 x + 13 3 {\bf y = -\frac{2}{3} x + \frac{\sqrt{13}}{3} }

2 x 3 y 5 13 = 0 {\bf -2x - 3y - 5\sqrt{13} = 0 } or y = 2 3 x 5 13 3 {\bf y = -\frac{2}{3} x - \frac{5\sqrt{13}}{3} }

The Area A = 2 13 a a d x = {\bf = 2 * \sqrt{13} \int_{-a}^{a} dx = } 2 13 x a a {\bf 2 * \sqrt{13} \:x|_{-a}^{a} } = 4 13 a = {\bf 4 * \sqrt{13} * a = } m n a m + n = 17. {\bf m * \sqrt{n} * a \implies m + n = 17. }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...