Area of a Region

Calculus Level pending

A : {\bf A: }

B : {\bf B: }

Given the curve 16 x 2 24 x y + 9 y 2 15 x 20 y = 0 {\bf 16 x^2 - 24 xy + 9 y^2 - 15 x - 20 y = 0 } and the perpendicular lines x 7 y + 10 = 0 a n d 7 x + y 10 = 0 {\bf x - 7 y + 10 = 0 \: and \: 7 x + y - 10 = 0 } in graph ( A ) , {\bf (A) \:, } find the area in graph ( B ) {\bf (B) } consisting of three right triangles.

Note: Although, the area is independent of the curve
16 x 2 24 x y + 9 y 2 15 x 20 y = 0 , {\bf 16 x^2 - 24 xy + 9 y^2 - 15 x - 20 y = 0 \:,} the curve is needed to find the points of intersection of the curve and the given lines.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 20, 2016

Using the equations of rotation to rotate the x and y axis we have:

x = x c o s θ y s i n θ {\bf x = x' cos\theta - y' sin\theta }

y = x s i n θ + y c o s θ {\bf y = x' sin\theta + y' cos\theta }

Replacing the equations of rotation in the original equation and simplifying we obtain:

( 16 c o s 2 θ 12 s i n ( 2 θ ) + 9 s i n 2 θ ) x 2 ( 7 s i n ( 2 θ ) + 24 c o s ( 2 θ ) ) x y + {\bf (16 cos^2\theta - 12 sin(2\theta) + 9 sin^2\theta)x'^2 - (7 sin(2\theta) + 24 cos(2\theta))x'y' +}

( 16 s i n 2 θ + 12 s i n ( 2 θ ) + 9 c o s 2 θ ) y 2 5 ( 3 c o s θ + 4 s i n θ ) x + 5 ( 3 s i n θ 4 c o s θ ) y = 0. {\bf (16 sin^2\theta + 12 sin(2\theta) + 9 cos^2\theta)y'^2 - 5(3 cos\theta + 4 sin\theta)x' + 5 (3 sin\theta - 4 cos\theta)y' = 0. }

To eliminate the x y {\bf x'y' } term set 7 s i n ( 2 θ ) + 24 c o s ( 2 θ ) = 0 t a n ( 2 θ ) = 24 7 {\bf 7 sin(2\theta) + 24 cos(2\theta) = 0 \implies tan(2\theta) = -\frac{24}{7} }

t a n 2 θ = 2 t a n θ 1 t a n 2 θ = 24 7 {\bf \implies tan2\theta = \frac{2 tan\theta}{1 - tan^2\theta} = -\frac{24}{7} \implies }

12 t a n 2 θ 7 t a n θ 12 = 0 t a n θ = 7 ± 25 24 {\bf 12 tan^2\theta - 7 tan\theta - 12 = 0 \implies tan\theta = \frac{7 \:\pm \:25}{24} }

Since the sign of xy term is negative we choose t a n θ = 3 4 c o s θ = 4 5 {\bf tan\theta = -\frac{3}{4} \implies cos\theta = \frac{4}{\sqrt{5}} } and s i n θ = 3 5 {\bf sin\theta = -\frac{3}{\sqrt{5}} \implies }

x = 4 5 x + 3 5 y {\bf x = \frac{4}{5} x' + \frac{3}{5} y'}

y = 3 5 x + 4 5 y {\bf y = -\frac{3}{5} x' + \frac{4}{5} y' }

Replacing the equations of rotation in the original equation and simplifying we obtain:

y = x 2 {\bf y' = x'^2 }

So we have a parabola in the x y {\bf x'y' } system.

Two points on the line x 7 y + 10 = 0 a r e {\bf x - 7 y + 10 = 0 \: are }

( 10 , 0 ) {\bf (-10, 0) } and ( 0 , 10 7 ) {\bf (0 , \frac{10}{7}) }

For ( 10 , 0 ) {\bf (-10, 0) } we have:

10 = 4 5 x + 3 5 y {\bf -10 = \frac{4}{5} x' + \frac{3}{5} y' }

0 = 3 5 x + 4 5 y {\bf 0 = -\frac{3}{5} x' + \frac{4}{5} y' }

( x = 8 , y = 6 ) {\bf \implies (x' = -8, y' = -6) }

Similarly, ( 0 , 10 7 ) ( x = 6 7 , y = 8 7 ) {\bf (0, \frac{10}{7}) \rightarrow (x' = -\frac{6}{7}, y' = \frac{8}{7}) }

Using the points in the x y s y s t e m ( x = 8 , y = 6 ) , ( x = 6 7 , y = 8 7 ) {\bf x'y' \: system \: (x' = -8, y' = -6) \:, \: (x' = -\frac{6}{7} , y' = \frac{8}{7}) \implies }

s l o p e m = 1 y = x + 2. {\bf slope \: m = 1 \implies y' = x' + 2. }

Two points on the line 7 x + y 10 = 0 a r e {\bf 7 x + y - 10 = 0 \: are }

( 0 , 10 ) a n d ( 10 7 , 0 ) {\bf (0 , 10) \: and (\frac{10}{7}, 0) }

Similarly, ( 0 , 10 ) ( x = 6 , y = 8 ) {\bf (0, 10) \rightarrow (x' = -6 , y' = 8) } and ( 10 7 , 0 ) ( x = 8 7 , y = 6 7 ) {\bf (\frac{10}{7} , 0) \rightarrow (x' = \frac{8}{7}, y' = \frac{6}{7}) }

Using the points in the x y s y s t e m ( x = 6 , y = 8 ) , ( x = 8 7 , y = 6 7 ) {\bf x'y' \: system \: (x' = -6 , y' = 8) , (x' = \frac{8}{7} , y' = \frac{6}{7}) \implies }

s l o p e m = 1 y = x + 2 {\bf \implies slope \: m = -1 \implies y' = -x' + 2 }

y = x + 2 a n d y = x 2 x 2 + x 2 = 0 x = 1 , x = 2 {\bf y' = -x' + 2 \: and \: y' = x'^2 \implies x'^2 + x' - 2 = 0 \implies x' = 1 \:, x' = -2\: \implies }

The points of intersection of y = x + 2 a n d y = x 2 {\bf y' = -x' + 2 \: and \: y' = x'^2 } are ( 1 , 1 ) , ( 2 , 4 ) {\bf (1 \:, 1) \:, (-2 \:, 4) }

Simiarily, y = x 2 a n d y = x + 2 {\bf y' = x'^2 \: and \: y' = x' + 2 } intersect at ( 1 , 1 ) a n d ( 2 , 4 ) {\bf (-1 , 1) \: and \: (2 , 4) }

and lines y = x + 2 a n d y = x + 2 {\bf y' = -x' + 2 \: and \: y' = x' + 2 } intersect at ( 0 , 2 ) . {\bf (0,2). }

In the x y {\bf x'y' } system:

Let A : ( 2 , 4 ) B : ( 1 , 1 ) C : ( 1 , 1 ) D : ( 2 , 4 ) O : ( 0 , 2 ) {\ A:(2,4) \: B:(1,1) \: C:(-1,1) \: D:(-2,4) \: O:(0,2) }

Since the lines are perpendicular A O B , B O C , D O C {\bf \angle AOB, \angle BOC, \angle DOC } are all right angles. A O B , B O C , D O C {\bf \therefore \triangle AOB, \triangle BOC, \triangle DOC } are all right triangles.

O A = 2 2 = O D a n d O B = 2 A r e a A O B = A r e a D O C = 2. {\bf OA = 2\sqrt{2} = OD \: and \: OB = \sqrt{2} \implies \: Area_{\triangle AOB} = Area_{\triangle DOC} = 2. }

O C = 2 A r e a B O C = 1 A = {\bf OC = \sqrt{2} \implies \: Area_{\triangle BOC} = 1 \implies A = } Area of all triangles = 5 {\bf = 5 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...