A calculus problem by Rocco Dalto

Calculus Level pending

The solution to the differential 1 2 ( d y d x ) 2 a y = 0 \dfrac{1}{2} \left(\dfrac{dy}{dx}\right)^2 - \dfrac{a}{y} = 0 can be expressed as the the curve x = f ( y ) x = f(y) , and the curve passes through the origin so that x = y = 0. x = y = 0.

The area of the surface formed by rotating the above curve x = f ( y ) x = f(y) about the x x -axis from y = 0 y = 0 to y = 2 a y = 2a can be expressed as

m n ( q + r ) π a 2 \dfrac{m}{n} * (\sqrt{q} + r)\pi * a^2 , where m , n , q , m, n, q, and r r are coprime positive integers.

Find m + n + q + r m + n + q + r .


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 21, 2016

1 2 ( d y d x ) 2 a y = 0 \dfrac{1}{2} \left(\dfrac{dy}{dx}\right)^2 - \dfrac{a}{y} = 0 \implies

d y d x = 2 a y \dfrac{dy}{dx} = \sqrt{\dfrac{2a}{y}} \implies x = 1 2 a y d y = x = \dfrac{1}{\sqrt{2a}} * \int \sqrt{y} \: dy = 1 3 2 a y 3 2 + C \dfrac{1}{3} \sqrt{\dfrac{2}{a}} * y^{\dfrac{3}{2}} + C

x ( 0 ) = 0 x = 1 3 2 a y 3 2 x(0) = 0 \implies x = \dfrac{1}{3} \sqrt{\dfrac{2}{a}} * y^{\dfrac{3}{2}}

and

d x d y = 1 2 a y . \dfrac{dx}{dy} = \dfrac{1}{\sqrt{2a}} * \sqrt{y}.

Rotating the curve x = 1 3 2 a y 3 2 x = \dfrac{1}{3} \sqrt{\dfrac{2}{a}} * y^{\dfrac{3}{2}} about the x axis from y = 0 y = 0 to y = 2 a y = 2a , the surface area A = 2 a π 0 2 a y 2 a + y d y A = \sqrt{\dfrac{2}{a}}\pi * \int_{0}^{2a} y \sqrt{2a + y} \: dy

Let u = y u = y and d v = 2 a + y d y d u = d y dv = \sqrt{2a + y} \: dy \implies du = dy and v = 2 3 ( 2 a + y ) 3 2 v = \dfrac{2}{3} * (2a + y)^{\dfrac{3}{2}} \implies

A = 2 3 2 a π ( ( 2 a + y ) 3 2 y 2 5 ( 2 a + y ) 5 2 ) 0 2 a = A = \dfrac{2}{3}\sqrt{\dfrac{2}{a}}\pi * ((2a + y)^{\dfrac{3}{2}} * y - \dfrac{2}{5} * (2a + y)^{\dfrac{5}{2}})|_{0}^{2a} =

= 2 2 3 π a 2 ( 16 + 8 2 5 ) = = \dfrac{2\sqrt{2}}{3}\pi * a^2 * (\dfrac{16 + 8\sqrt{2}}{5}) =

32 15 2 π a 2 + 32 15 π a 2 = \dfrac{32}{15} \sqrt{2}\pi * a^2 + \dfrac{32}{15}\pi * a^2 = 32 15 ( 2 + 1 ) π a 2 = m n ( q + r ) π a 2 \dfrac{32}{15} * (\sqrt{2} + 1)\pi * a^2 = \dfrac{m}{n} * (\sqrt{q} + r)\pi * a^2 m + n + p + r = 50. \implies m + n + p + r = 50.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...