A calculus problem by Rocco Dalto

Calculus Level 5

The solution to the differential d 2 y d x 2 1 x + 1 d y d x + 4 ( x + 1 ) 2 y = 0 \dfrac{d^2y}{dx^2} - \dfrac{1}{x + 1} \dfrac{dy}{dx} + \dfrac{4}{(x + 1)^2} y = 0 , with initial conditions y ( 0 ) = 1 y(0) = 1 , y ( 0 ) = 1 y'(0) = 1 can be expressed as the the curve y = f ( x ) y = f(x) .

The area of the above curve y = f ( x ) y = f(x) from x = 0 x = 0 to x = e 2 π 3 1 x = e^{\frac{2\pi}{\sqrt{3}}} - 1 can be expressed as m n ( e p π q r ) \frac{m}{n} * (e^{\frac{p\pi}{\sqrt{q}}} - r ) , where m m , n n , p p , q q , and r r are coprime positive integers.

Find: m + n + p + q + r . m + n + p + q + r .

Hint: Use (and/or) prove the statement below:

Let d 2 y d x 2 + P ( x ) d y d x + Q ( x ) y = 0 \dfrac{d^2y}{dx^2} + P(x) \dfrac{dy}{dx} + Q(x) y = 0 and change the independent variable from x x to z = z ( x ) z = z(x) , where z(x) is an unspecified function of x x .

Show that the differential above can be transformed in this way into an equation with constant coefficients if and only if Q + 2 P Q Q 3 2 \dfrac{Q' + 2PQ}{Q^{\frac{3}{2}}} is constant, in which case z = Q ( x ) d x z = \int \sqrt{Q(x)} \: dx will affect the desired result.

Note: If you which to construct such a differential choose a P ( x ) P(x) and a real constant j j and solve d Q d x + 2 P ( x ) Q = j Q 3 2 \dfrac{dQ}{dx} + 2 P(x) Q = j * Q^{\dfrac{3}{2}} for Q ( x ) Q(x) , by letting w = Q 1 2 w = Q^{-\dfrac{1}{2}} .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rocco Dalto
Nov 27, 2016

We reduce d 2 y d x 2 1 x + 1 d y d x + 4 ( x + 1 ) 2 y = 0 \dfrac{d^2y}{dx^2} - \dfrac{1}{x + 1} \dfrac{dy}{dx} + \dfrac{4}{(x + 1)^2} y = 0 to a second order differential with constant coefficients by letting z = 2 ln ( x + 1 ) z = 2 * \ln(x + 1) .

Note: From the statement above(Hint), Q + 2 P Q Q 3 2 = 2 z = Q ( x ) d x = 2 1 x + 1 d x = 2 l n ( x + 1 ) \dfrac{Q' + 2PQ}{Q^{\frac{3}{2}}} = -2 \implies z = \int \sqrt{Q(x)} \: dx = 2 * \int \dfrac{1}{x + 1} \: dx = 2 * ln(x + 1) will reduce the above differential to a second order differential with constant coefficients.

z = 2 ln ( x + 1 ) z = 2 * \ln(x + 1) \implies

d y d x = d y d z ( 2 x + 1 ) \dfrac{dy}{dx} = \dfrac{dy}{dz} * (\dfrac{2}{x + 1}) \implies

and,

d 2 y d x 2 = d d x ( d y d z 2 x + 1 ) = 2 ( d y d z ( 1 ( x + 1 ) 2 ) + 1 ( x + 1 ) d d x ( d y d z ) ) = \dfrac{d^2 y}{dx^2} = \dfrac{d}{dx}(\dfrac{dy}{dz} * \dfrac{2}{x + 1}) = 2 * (\dfrac{dy}{dz}(-\dfrac{1}{(x + 1)^2}) + \dfrac{1}{(x + 1)} \dfrac{d}{dx}(\dfrac{dy}{dz})) =

2 ( 1 ( x + 1 ) 2 d y d z + 1 ( x + 1 ) d d z ( d y d z ) 2 ( x + 1 ) ) = 2 * (\dfrac{-1}{(x + 1)^2} \dfrac{dy}{dz} + \dfrac{1}{(x + 1)} \dfrac{d}{dz}(\dfrac{dy}{dz}) \dfrac{2}{(x + 1)}) =

4 ( x + 1 ) 2 d 2 y d z 2 2 ( x + 1 ) 2 d y d z \dfrac{4}{(x + 1)^2} \dfrac{d^2y}{dz^2} - \dfrac{2}{(x + 1)^2} \dfrac{dy}{dz}

Replacing d y d x \dfrac{dy}{dx} and d 2 y d x 2 \dfrac{d^2y}{dx^2} into the above differential we obtain:

d 2 y d x 2 d y d x + y = 0 m 2 m + 1 = 0 m = 1 2 ± 3 2 i \dfrac{d^2y}{dx^2} - \dfrac{dy}{dx} + y = 0 \implies m^2 - m + 1 = 0 \implies m = \dfrac{1}{2} \pm \dfrac{\sqrt{3}}{2}i \implies

y ( z ) = e z 2 ( c 1 c o s ( 3 2 z ) + c 2 s i n ( 3 2 z ) ) y(z) = e^{\dfrac{z}{2}} * (c1 * cos(\dfrac{\sqrt{3}}{2} z) + c2 * sin(\dfrac{\sqrt{3}}{2} z)) \implies

y ( x ) = ( x + 1 ) ( c 1 c o s ( 3 l n ( x + 1 ) ) + c 2 s i n ( 3 l n ( x + 1 ) ) ) y(x) = (x + 1) * (c1 * cos(\sqrt{3} * ln(x + 1)) + c2 * sin(\sqrt{3} * ln(x + 1)))

and,

d y d x = ( 3 c 2 + c 1 ) c o s ( 3 l n ( x + 1 ) ) + ( c 2 3 c 1 ) s i n ( 3 l n ( x + 1 ) ) \dfrac{dy}{dx} = (\sqrt{3} * c2 + c1) * cos(\sqrt{3} * ln(x + 1)) + (c2 - \sqrt{3} * c1) * sin(\sqrt{3} * ln(x + 1))

Using the initial conditions: y ( 0 ) = 1 y(0) = 1 and y ( 0 ) = 1 y'(0) = 1 \implies y ( x ) = ( x + 1 ) ( c o s ( 3 l n ( x + 1 ) ) ) y(x) = (x + 1) * ( cos(\sqrt{3} * ln(x + 1)))

Let I ( x ) = ( x + 1 ) ( c o s ( 3 l n ( x + 1 ) ) ) d x I(x) = \int (x + 1) * ( cos(\sqrt{3} * ln(x + 1))) \: dx

Let u = c o s ( 3 l n ( x + 1 ) ) , d v = ( x + 1 ) d x u = cos(\sqrt{3} * ln(x + 1)), dv = (x + 1) \: dx \implies d u = 3 x + 1 s i n ( 3 l n ( x + 1 ) ) d x du = -\dfrac{\sqrt{3}}{x + 1} * sin(\sqrt{3} * ln(x + 1)) \: dx and v = ( x + 1 ) 2 2 v = \dfrac{(x + 1)^2}{2} \implies

I ( x ) = ( x + 1 ) 2 2 c o s ( 3 l n ( x + 1 ) ) + 3 2 ( x + 1 ) s i n ( 3 l n ( x + 1 ) ) d x I(x) = \dfrac{(x + 1)^2}{2} * cos(\sqrt{3} * ln(x + 1)) + \dfrac{\sqrt{3}}{2} * \int (x + 1) * sin(\sqrt{3} * ln(x + 1)) \: dx

Let u = s i n ( 3 l n ( x + 1 ) ) , d v = ( x + 1 ) d x u = sin(\sqrt{3} * ln(x + 1)), dv = (x + 1) \: dx \implies d u = 3 x + 1 c o s ( 3 l n ( x + 1 ) ) d x du = \dfrac{\sqrt{3}}{x + 1} * cos(\sqrt{3} * ln(x + 1)) \: dx and v = ( x + 1 ) 2 2 v = \dfrac{(x + 1)^2}{2} \implies

I ( x ) = ( x + 1 ) 2 2 ( c o s ( 3 l n ( x + 1 ) ) + 3 2 s i n ( 3 l n ( x + 1 ) ) ) 3 4 I ( x ) I(x) = \dfrac{(x + 1)^2}{2} * (cos(\sqrt{3} * ln(x + 1)) + \dfrac{\sqrt{3}}{2} * sin(\sqrt{3} * ln(x + 1))) - \dfrac{3}{4} * I(x) \implies

7 4 I ( x ) = ( x + 1 ) 2 2 ( c o s ( 3 l n ( x + 1 ) ) + 3 2 s i n ( 3 l n ( x + 1 ) ) ) \dfrac{7}{4} * I(x) = \dfrac{(x + 1)^2}{2} * (cos(\sqrt{3} * ln(x + 1)) + \dfrac{\sqrt{3}}{2} * sin(\sqrt{3} * ln(x + 1))) \implies

I ( x ) = 2 7 ( x + 1 ) 2 2 ( c o s ( 3 l n ( x + 1 ) ) + 3 2 s i n ( 3 l n ( x + 1 ) ) ) I(x) = \dfrac{2}{7} * \dfrac{(x + 1)^2}{2} * (cos(\sqrt{3} * ln(x + 1)) + \dfrac{\sqrt{3}}{2} * sin(\sqrt{3} * ln(x + 1)))

\implies

Area A = I ( x ) 0 ( e 2 π 3 1 ) = A = I(x)|_{0}^{(e^{\frac{2\pi}{\sqrt{3}}} - 1)} = 2 7 ( e 4 π 3 1 ) = m n ( e p π q r ) \dfrac{2}{7} * (e^{\frac{4\pi}{\sqrt{3}}} - 1) = \frac{m}{n} * (e^{\frac{p\pi}{\sqrt{q}}} - r )

m + n + p + q + r = 17. \implies m + n + p + q + r = 17.

Oh wow. That's very instructive!

Calvin Lin Staff - 4 years, 6 months ago
Mark Hennings
Nov 30, 2016

Similarly to the previous problem of this type, we can look for solutions of the form y = ( x + 1 ) m y = (x+1)^m . These will work provided that m ( m 1 ) m + 4 = 0 m(m-1) - m + 4 \; = \; 0 and hence m = 1 ± i 3 m = 1 \pm i\sqrt{3} . Matching the initial conditions gives y = 1 2 ( x 1 + i 3 + x 1 i 3 ) y = \tfrac12(x^{1+i\sqrt{3}} + x^{1-i\sqrt{3}}) . Keeping the complex numbers in makes the integral easy, being 1 2 [ 1 2 + i 3 x 2 + i 3 + 1 2 i 3 x 2 i 3 ] 0 e 2 π 3 1 = 2 7 ( e 4 π 3 1 ) \tfrac12\left[ \frac{1}{2+i\sqrt{3}}x^{2+i\sqrt{3}} + \frac{1}{2-i\sqrt{3}}x^{2-i\sqrt{3}}\right]_0^{ e^{\frac{2\pi}{\sqrt{3}}} - 1 } \; = \; \tfrac27\big(e^{\frac{4\pi}{\sqrt{3}}} - 1\big) making the answer 17 \boxed{17} .

The last three differential equations I constructed are of the the same type. That is, they use the same theorem and construction. The last one I used was the following differential equation below.

d 2 y d x 2 1 x ( x + 1 ) d y d x + x 2 ( x + 1 ) 2 ( x ln ( x + 1 ) ) 2 y = 0 \dfrac{d^2y}{dx^2} - \dfrac{1}{x(x + 1)} \dfrac{dy}{dx} + \dfrac{x^2}{(x + 1)^2 (x - \ln(x + 1))^2} y = 0

If y 1 ( x ) y_1(x) and y 2 ( x ) y_2(x) are linear independent solutions to the differential equation above.

Evaluate: 0 e 1 y 1 ( x ) 2 + y 2 ( x ) 2 d x \displaystyle \int_{0}^{e - 1} y_1(x)^2 + y_2(x)^2 \, dx .

Express the result to 6 decimal places.

Is there a simple substitution that would work here?

Rocco Dalto - 4 years, 6 months ago

Log in to reply

"Of this type"...

The previous problem of yours I posted a solution was a DE of the form x 2 y + A x y ( x ) + B y ( x ) = 0 x^2 y'' + Axy'(x) + By(x) = 0 with constants A , B A,B . Equations of this type always permit solutions of the form y = x a y = x^a , provided that a ( a 1 ) + A a + B = 0 a(a-1) + Aa + B = 0 , a quadratic equation in a a , whose two roots give the two solutions. This one just goes with powers of x + 1 x+1 instead.

My other comment in both cases is that the integration is much easier using complex numbers.

Mark Hennings - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...