If y 1 ( x ) and y 2 ( x ) are linear independent solutions to the differential d x 2 d 2 y − x ( x + 1 ) 1 d x d y + ( x + 1 ) 2 ( x − ln ( x + 1 ) ) 2 x 2 y = 0 with initial conditions y 1 ( a ) = 1 , y 1 ′ ( a ) = 2 ∗ ( a + 1 ) a , y 2 ( a ) = 0 , y 2 ′ ( a ) = 2 3 ∗ ( a + 1 a ) , where a is a positive solution to ln ( a + 1 ) = a − 1 .
Evaluate: ∫ 0 e − 1 y 1 ( x ) 2 + y 2 ( x ) 2 d x .
Express the result to 6 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Prior to solving the differential
d
x
2
d
2
y
−
x
(
x
+
1
)
1
d
x
d
y
+
(
x
+
1
)
2
(
x
−
ln
(
x
+
1
)
)
2
x
2
y
=
0
,
I am going to demonstrate how I constructed the differential, and reduced it to a second order differential with constant coefficients.
If you reviewed(or proved) the statement(in the
Hint
), as well as my second statement which outlines the construction, you will be familiar with what follows.
Let P ( x ) = − x ( x + 1 ) 1 = − ( x 1 − x + 1 1 ) and let the constant j = − 2 ⟹
d x d Q − x ( x + 1 ) 2 Q = − 2 Q 2 3 ⟹
Q − 2 3 d x d Q − x ( x + 1 ) 2 Q − 2 1 = − 2 .
Let W = Q − 2 3 ⟹ − 2 d x d W = Q − 2 3 d x d Q ⟹
d x d W + x ( x + 1 ) 1 W = 1 ⟹
d x d ( x + 1 x ∗ W ) = x + 1 x ⟹
x + 1 x ∗ W = ∫ ( 1 − x + 1 1 ) d x + C = x − ln ( x + 1 ) + C ⟹
W = ( x x + 1 ) ( x − ln ( x + 1 ) ) + ( x x + 1 ) ∗ C .
Let C = 0 ⟹ W = ( x x + 1 ) ( x − ln ( x + 1 ) )
W = Q − 2 1 ⟹ Q = ( x + 1 ) 2 ( x − ln ( x + 1 ) ) 2 x 2 ⟹
z ( x ) = ∫ Q ( x ) d x = ∫ ( x − ln ( x + 1 ) 2 1 − 1 / ( x + 1 ) ) d x = ln ( x − l n ( x + 1 ) )
Now we have constructed our second order differential d x 2 d 2 y − x ( x + 1 ) 1 d x d y + ( x + 1 ) 2 ( x − ln ( x + 1 ) ) 2 x 2 y = 0 and the substitution z = ln ( x − l n ( x + 1 ) ) will reduce this differential to a second order differential with constant coefficients, since Q 3 2 Q ′ + 2 P Q = − 2 .
Now we begin solving the differential d x 2 d 2 y − x ( x + 1 ) 1 d x d y + ( x + 1 ) 2 ( x − ln ( x + 1 ) ) 2 x 2 y = 0 .
From above, let z = ln ( x − l n ( x + 1 ) ) ⟹ d x d y = ( x + 1 x ) ( x − ln ( x + 1 ) 1 ) d z d y
and,
d x 2 d 2 y = d x d ( d z d y ( x + 1 x ) ( x − ln ( x + 1 ) 1 ) ) =
d
z
d
y
(
(
x
+
1
)
2
∗
(
x
−
ln
(
x
+
1
)
)
2
)
x
−
ln
(
x
+
1
)
−
x
2
)
+
(
x
+
1
)
2
∗
(
x
−
ln
(
x
+
1
)
)
2
x
2
d
z
2
d
2
y
Replacing d x 2 d 2 y and d x d y into the above differential we obtain:
d z 2 d 2 y − d x d y + y = 0 ⟹ m 2 − m + 1 = 0 ⟹ m = 2 1 ± 2 3 ⟹
y ( z ) = e 2 z ∗ ( c 1 ∗ c o s ( 2 3 z ) + c 2 ∗ s i n ( 2 3 z ) )
z = ln ( x − l n ( x + 1 ) ) ⟹
The general solution is: y ( x ) = x − ln ( x + 1 ) ∗ ( c 1 ∗ c o s ( 2 3 ∗ ( ln ( x − ln ( x + 1 ) ) ) + c 2 ∗ s i n ( 2 3 ∗ ( ln ( x − ln ( x + 1 ) ) ) )
∴ The two linear independent solutions are:
y 1 ( x ) = c 1 ∗ x − ln ( x + 1 ) ∗ c o s ( 2 3 ∗ ( ln ( x − ln ( x + 1 ) ) )
y 2 ( x ) = c 2 ∗ x − ln ( x + 1 ) ∗ s i n ( 2 3 ∗ ( ln ( x − ln ( x + 1 ) ) )
Using the initial conditions y 1 ( a ) = 1 , y 1 ′ ( a ) = 2 ∗ ( a + 1 ) a , y 2 ( a ) = 0 , y 2 ′ ( a ) = 2 3 ∗ ( a + 1 a ) ⟹ c 1 = c 2 = 1 .
y 1 ( x ) and y 2 ( x ) are clearly linear independent since y 1 y 2 = t a n ( 2 3 ∗ ( ln ( x − ln ( x + 1 ) ) ) = constant.
and,
∫ 0 e − 1 y 1 ( x ) 2 + y 2 ( x ) 2 d x = ∫ 0 e − 1 ( x − ln ( x + 1 ) ) d x
For ∫ ln ( x + 1 ) d x
Let u = ln ( x + 1 ) , d v = d x ⟹ d u = x + 1 1 and v = x ⟹
∫ ln ( x + 1 ) d x = x ln ( x + 1 ) − ∫ ( 1 − x + 1 1 ) d x = x ∗ ln ( x + 1 ) − x + ln ( x + 1 ) = ( x + 1 ) ∗ ln ( x + 1 ) − x
⟹
∫ 0 e − 1 ( x − ln ( x + 1 ) ) d x = 2 1 ( x ) ( x + 2 ) − ( x + 1 ) ∗ ln ( x + 1 ) ∣ 0 e − 1 = 2 e 2 − 2 e − 1 = . 4 7 6 2 4 6 to six decimal places.
Problem Loading...
Note Loading...
Set Loading...
Using the substitution z = ln ( x − ln ( x + 1 ) ) yields the differential equation d z 2 d 2 y − d z d y + y = 0 and we note that z = 0 when x = a . Note that there is only one positive value a for which ln ( a + 1 ) = a − 1 , and so a is well-defined. This equation has the solutions e m z where m = 2 1 ± 2 1 i 3 . Thus we obtain linearly independent solutions y 1 ( x ) y 2 ( x ) = = e 2 1 z cos ( 2 1 3 z ) = x − ln ( x + 1 ) cos ( 2 1 3 ln ( x − ln ( x + 1 ) ) ) e 2 1 z sin ( 2 1 3 z ) = x − ln ( x + 1 ) sin ( 2 1 3 ln ( x − ln ( x + 1 ) ) ) Since z ′ ( a ) = a + 1 a , it is easy to check that y 1 , y 2 as given above are the required solutions of the differential equation. But then y 1 ( x ) 2 + y 2 ( x ) 2 = x − ln ( x + 1 ) , and so ∫ 0 e − 1 ( y 1 ( x ) 2 + y 2 ( x ) 2 ) d x = ∫ 0 e − 1 ( x − ln ( x + 1 ) ) d x = 2 1 ( e 2 − 2 e − 1 ) = 0 . 4 7 6 2 4 6