A calculus problem by Rocco Dalto

Calculus Level 5

Let α \alpha be a real number and α > 1 \alpha > 1 . The linear system d x d t = α x y \dfrac{dx}{dt} = \alpha x - y d y d t = x + α y \dfrac{dy}{dt} = x + \alpha y has the solution r = r ( θ ) , r = r(\theta), where r ( 0 ) = 1. r(0) = 1.

Find the positive value of α \alpha such that the arc length L L of the curve r ( θ r(\theta ) on the interval ( 0 θ ln ( α ) α ) 0 \leq \theta \leq \dfrac{\ln(\alpha)}{\alpha}) is L = 1 + α 2 α L = \dfrac{\sqrt{1 + \alpha^2}}{\alpha} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 4, 2016

d y d x = x + α y α x y . \dfrac{dy}{dx} = \dfrac{x + \alpha y}{\alpha x - y}.

Converting to polar coordinates, let x = r c o s θ , y = r s i n θ x = r cos\theta, y = r sin\theta ( 1 ) : x 2 + y 2 = r 2 , ( 2 ) θ = arctan ( y x ) (1): \: x^2 + y^2 = r^2, (2) \: \theta = \arctan(\dfrac{y}{x})

Taking the derivatives with respect to x x of ( 1 ) (1) and ( 2 ) (2) we obtain:

r d r d x = x + y d y d x r \dfrac{dr}{dx} = x + y \dfrac{dy}{dx} r 2 d θ d x = x d y d x y r^2 \dfrac{d\theta}{dx} = x \dfrac{dy}{dx} - y
\implies 1 r d r d θ = α x 2 x y + x y + α y 2 x 2 + α x y α x y + y 2 = α \dfrac{1}{r} \dfrac{dr}{d\theta} =\dfrac{\alpha x^2- xy + xy + \alpha y^2}{x^2 + \alpha xy - \alpha xy + y^2} = \alpha \implies

d r d θ = α r ln ( r ) = α θ + K \dfrac{dr}{d\theta} = \alpha r \implies \ln(r) = \alpha \theta + K \implies

r ( θ ) = C e α θ r(\theta) = C e^{\alpha \theta} , r ( 0 ) = 1 r ( θ ) = e α θ . r(0) = 1 \implies r(\theta) = e^{\alpha \theta}.

So, we have a spiral, and since α > 0 \alpha > 0 , it spirals outward in a counter close-wise direction.

To obtain the arc length of r ( θ ) r(\theta) on ( 0 < = θ < = ln ( α ) α ) 0 <= \theta <= \dfrac{\ln(\alpha)}{\alpha}) we note that:

r ( t ) = r i r , \vec{r(t)} = r \vec{i_{r}}, where the unit vector i r = c o s ( θ ( t ) ) i + s i n ( θ ( t ) ) j i r = ( s i n ( θ ( t ) ) i + c o s ( θ ( t ) ) j ) d θ d t = d θ d t i θ \vec{i_{r}} = cos(\theta(t)) \vec{i} + sin(\theta(t)) \vec{j} \implies \vec{i_{r}'} = (-sin(\theta(t)) \vec{i} + cos(\theta(t)) \vec{j}) \dfrac{d\theta}{dt} = \dfrac{d\theta}{dt} \vec{i_\theta} and the dot product of the unit vectors i r i θ = 0 , \vec{i_{r}} \cdot \vec{i_\theta} = 0, so that i r \vec{i_{r}} and i θ \vec{i_\theta} are perpendicular vectors.

d r d t = r ( t ) i r + i r d r d t \dfrac{d\vec{r}}{dt} = r(t) \vec{i_{r}'} + \vec{i_{r}} \dfrac{dr}{dt} \implies d r d t = d r d t i r + r ( t ) d θ d t i θ \dfrac{d\vec{r}}{dt} = \dfrac{dr}{dt} \vec{i_{r}}+ r(t) \dfrac{d\theta}{dt} \vec{i_{\theta}}

d r d t = ( d r d t ) 2 + r 2 ( t ) ( d θ d t ) 2 \implies \vert\dfrac{d\vec{r}}{dt}\vert = \sqrt{(\dfrac{dr}{dt})^2 + r^2(t) (\dfrac{d\theta}{dt})^2} \implies

Arc length L = t 1 t 2 d r d t d t = L = \int_{t_{1}}^{t_{2}} \vert\dfrac{d\vec{r}}{dt}\vert \: dt = 0 ln ( α ) α r 2 + ( d r d θ ) 2 d θ = \int_{0}^{\dfrac{\ln(\alpha)}{\alpha}} \sqrt{r^2 + (\dfrac{dr}{d\theta})^2} \: d\theta = 1 + α 2 0 ln ( α ) α e α θ d θ = \sqrt{1 + \alpha^2} \int_{0}^{\dfrac{\ln(\alpha)}{\alpha}} e^{\alpha \theta} \ d\theta =

1 + α 2 α e α θ 0 ln ( α ) α = \dfrac{\sqrt{1 + \alpha^2}}{\alpha} \: e^{\alpha \theta} |_{0}^{\dfrac{\ln(\alpha)}{\alpha}} = 1 + α 2 α ( α 1 ) = 1 + α 2 α \dfrac{\sqrt{1 + \alpha^2}}{\alpha} (\alpha - 1) = \dfrac{\sqrt{1 + \alpha^2}}{\alpha} \implies

1 + α 2 α ( α 2 ) = 0 α = 2. \dfrac{\sqrt{1 + \alpha^2}}{\alpha} (\alpha - 2) = 0 \implies \alpha = 2.

Note: You can get the same result solving the homogeneous differential equation

d y d x = x + α y α x y , \dfrac{dy}{dx} = \dfrac{x + \alpha y}{\alpha x - y}, by making the substitution z = y x z = \dfrac{y}{x} which results in α z 1 + z 2 d z = d x x \int \dfrac{\alpha - z}{1 + z^2} \: dz = \int \dfrac{dx}{x}

Letting z = t a n θ d z = s e c 2 θ d θ z = tan\theta \implies dz = sec^2\theta \: d\theta \implies

α θ = l n ( x c c o s θ ) = ln ( r c ) , \alpha \theta = ln(\dfrac{x}{c \: cos\theta}) = \ln(\dfrac{r}{c}), where z = t a n θ z = tan\theta and x = r cos θ r = C e α θ x = r \cos\theta \implies r = C e^{\alpha \theta} , which is the same solution as above.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...